

Paladini Geotechnik • Zippengasse 15 • 53359 Rheinbach

Stadt Sankt Augustin Fachbereich Stadtplanung und Bauordnung Planung und Liegenschaften Frau C. Trimborn Markt 1

53754 Sankt Augustin

Ingenieurbüro für Baugrund, Hydrologie, Umwelt, Entsorgung und Arbeitssicherheit

Paladini Geotechnik Zippengasse 15 53359 Rheinbach

Telefon: 02225 / 999 89 40 Telefax: 02225 / 999 89 44 info@paladini-geotechnik.de

Rheinbach, 17. März 2014

Auftrag Nr. 20131016

Projekt: Umwelttechnische Untersuchung der Altablagerung 5209-118,

B-Plan Buisdorf, "Am Rosenhain"

Thema: Umwelttechnische Untersuchung und Baugrundgutachten für

den Straßenbau im Bereich des Wendehammers

Anlagen: 1.1 Lageplan mit Bohr- und Untersuchungspunkten

1.2 Verteilung Deponiegase, Hauptkomponenten

1.3 Verteilung Deponiegase, Spurengase

Bohrprofile nach DIN 4023
3.1 und 3.2 Analyseergebnisse Bodenluft
3.3. bis 3.10 Probennahmeprotokoll Bodenluft

3.11 bis 3.15 Analyseergebnisse Boden (LAGA und DepV)

4.1 und 4.2 Fotodokumentation

1 Situation

In Anlage 1 ist die Altablagerung 5209/118 gemeinsam mit den 1998 durchgeführten umwelttechnischen Untersuchungen sowie den durch unser Büro durchgeführten Bohrungen im Maßstab 1:2.000 dargestellt.

Die erforderlichen Arbeiten wurden am 22.07.2013 auf der Grundlage unseres Angebots Nr. 2013-956 vom 16.07.2013 schriftlich beauftragt.

2 Unterlagen

Seitens des Stadt Sankt Augustin wurden uns folgende Planunterlagen zur Verfügung gestellt:

- Gutachten Nr. 4567 vom 20.04.1998 Baugrundlabor Batke GmbH und hieraus die Anlage 1 zur Grundlage der Erstellung von Anlage 1.1)
- Historische Karte, Neuaufnahme 1891 1912, http://www.tim-online.nrw.de
 (2013)
- Grundwassermessstellen 076860115 –RSK Altabl. 20/A/2, 076724311 Gilliam St.Aug.1, 076865812 RSAG Siegb. BB1,076732216 Gilliam St.Aug. 6 http://www.elwasweb.nrw.de (2013)

Weiterhin wurden folgende Kartenunterlagen verwendet:

- Geologische Karte 1: 25.000, Blatt 5209 Siegburg (1978)
- Grundwassergleichenplan, Blatt L 5308 Bonn, 1 : 50.000 (1995), Wasserstände vom April 1988 (mit Grundwasserhöchstständen)
- Hydrologische Kartenwerke 1 : 25.000, Blatt 5209 Siegburg (1988), Profil- und Grundrisskarten
- Planauskünfte der Versorger (Thyssengas, Telekom, Pledoc, Westnetz, Rhenag)

3 Topgraphischer, geologischer und hydrologischer Überblick

3.1 Topographie

Der Untersuchungsbereich liegt am südlichen Ortsrand von Stankt Augustin - Buisdorf. Die Untersuchungsfläche wird im Osten durch die A3, im Norden durch die Bundesbahn und im Westen und Süden durch die Straße "Am Rosenhain" begrenzt. Verlauf der Verdachtsfläche steigt das Gelände nach Südosten um rund 7 m an. Derzeit wird das Grundstück als Acker (Maisbepflanzung) genutzt.

3.2 Geologie und Hydrologie

Nach den o.a. Kartenunterlagen wird der natürliche Untergrund oberflächennah aus den ins Pleistozän gestellten Sedimenten der Mittelterrasse der Sieg aufgebaut. Nördlich schließen sich die tiefer liegenden Sedimente der jüngeren Niederterrasse der Sieg an. Der Kornverteilung nach bestehen diese aus Sanden und Kiesen mit einer Auflage aus sandigen Schluffen (Lehm).

Diese überlagern die tertiären Schichten. Sie bestehen aus Tonen, teils sandigen Schluffen und wechsellagernden Feinsanden und Braunkohlelagen.

Im vorliegenden Gutachten Nr. 4567 (IB Batke 1998) wurden aus den Grundwassergleichenkarten der StaWa (1986, 1987 und 1989) Grundwasserstände zwischen 57 und 58 mNN beobachtet.

Seite 3 von 16 zum Gutachten Nr. 20131016 vom 17. März 2014

Neuere Messungen in den Grundwassermessstellen zeigen im Zeitraum nach dem Jahr 2000 auch höhere Grundwasserstände von rund 57 bis rund 61 mNN an. Somit reduziert sich der Flurabstand in der Ebene auf minimal rund 2,0 m.

Die umliegenden Grundwassermessstellen zeigen zu verschiedenen Zeitpunkten folgende Hochstände:

Messstellennr. / Messstellenname	Höhe	Jahr
076860115 / RSK Altabl. 20/A/2	ca. 59,5 mNN	2008
076724311 / Gilliam St. Aug. 1	ca. 59,8 mNN	1988
	ca. 59,5 mNN	2003
076865812 / RSAG Siegb. BB 1	ca. 60,8 mNN	2003
076732216 / Gilliam St. Aug. 6	ca. 63,5 mNN	1988

Die ersten beiden Messstellen (grau hinterlegt) liegen nahe der Altablagerung, so dass die dort gemessenen Höhen als repräsentativ für den Untersuchungsbereich anzusehen sind.

Die beiden unteren Messstellen in der Tabelle geben Werte an, die in mittlerer Entfernung zur Altablagerung gemessen wurden.

Als maximale Wertespanne für den Grundwasserstand (HGW) im Untersuchungsbereich ist daher für den Zeitraum nach dem Jahr 2000 ein Wert von 59,5 mNN bis 59,8 mNN anzunehmen.

4 Durchgeführte Felduntersuchungen

4.1 Vorgehensweise

An den in Anlage 1.1 dargestellten Punkten wurden durch unser Büro an 12 Untersuchungsstellen 16 ergänzende Kleinrammbohrungen (60 – 36 mm \varnothing) bis in Tiefen zwischen 3,00 m und 11,00 m unter Geländeoberkante abgeteuft.

Die Bohrungen wurden so tief geführt, dass der gewachsene Untergrund eindeutig angesprochen werden konnte.

An den Untersuchungsstellen B 20 und B 21 führten Rammhindernisse in den Altablagerung dazu, dass die Bohrversuche abgebrochen werden mussten. An diesen Stellen sollten nach telefonischer Rücksprache keine neuen Bohrversuche unternommen werden.

Zur detaillierten Aufnahme der im möglichen Gründungsbereich einer neuen Straße mit Wendehammer anstehenden Bodenschichten wurden die ersten 4 Bohrmeter in Meterschritten mit \emptyset 60/50 mm abgeteuft.

In die zeichnerische Darstellung der Anlage 2 wurden auch die Bohrungen B 1 bis B 15 des IB Batke aus dem Jahr 1998 übernommen.

Oberflächennah anstehende, künstlich angefüllte Böden sowie der Mutterboden wurden zur besseren Lesbarkeit der Anlage 2 hellgrau hinterlegt, die unterlagernden

Seite 4 von 16 zum Gutachten Nr. 20131016 vom 17. März 2014

gewachsenen Decklehme sind oliv, die Sande orange und die Kiese gelb eingefärbt.

Die Bohrprofile der Kleinrammbohrungen sind nach DIN 4023 in der Anlage 2 höhenrichtig auf mNN zeichnerisch dargestellt. Sie gelten wie üblich nur an den Untersuchungsstellen für die Einzelheiten des Schichtenaufbaus.

Als Bezugspunkt für das Nivellement wurde der südlich des Grundstücks liegende Kanaldeckel mit einer Höhe von 70,38 mNN herangezogen (siehe Anlage 1.1). Dies ist derselbe Bezugspunkt aus dem Gutachten des IB Batke. Augenscheinlich wurde dessen Höhe in der Straße nicht verändert.

Die im Altablagerungskörper liegenden Bohrungen wurden als temporäre Bodenluftmessstellen ausgebaut, diese gegen die Atmosphäre abgedichtet, auf die Spurengase (Parameter: BTEX, LHKW) und die Bodenlufthauptkomponenten chemisch untersucht.

Die im Altablagerungskörper liegenden Bohrungen wurden schichtenweise oder nach organoleptischen Gesichtspunkten beprobt.

Da der oberflächennahe Bereich durch Straßenbauarbeiten erfasst wird und dort Erdbewegungen erfolgen wurden die Einzelproben der Bohrungen zu einer Mischprobe zusammengefasst und diese nach den Parametern der LAGA-Liste und DepV chemisch untersucht.

4.2 Erbohrte Bodenverhältnisse

Ebene: Die Bohrungen B 28a bis B 31 liegen in der Ebene parallel der Bahntrasse. Dort wurden gewachsene Bodenverhältnisse ohne Hinweise auf Altablagerungen aufgeschlossen. Nachfolgend werden diese Bohrungen zuerst beschrieben.

Oberflächennah wurde einheitlich eine 0,50 m starke **Mutterbodendecke** aufgeschlossen.

Unterlagernd hierzu folgen der Kornverteilung nach Feldansprache **sehr schwach tonige** bis **stark tonige**, **schwach sandige** bis **stark sandige Schluffe** (Decklehme). Deren Konsistenzen nach Feldansprache sind in Abhängigkeit der vorgefundenen Wassersättigung "steif" bis "halbfest".

Diese Schichten überlagern die körnigen Sedimente der Mittelterrasse der Sieg. Deren Schichten werden aus schwach schluffigen bis schluffigen, schwach sandigen bis sandigen, teils steinigen Kiesen und Kies-Steine Gemengen sowie aus sehr schwach schluffigen Kiessanden und sehr schwach schluffigen bis schwach schluffigen, teils schwach kiesigen Sanden aufgebaut. Die beim Kleinrammbohren abgeschätzten Lagerungsdichten sind "mitteldicht" bis "sehr dicht".

Altablagerung: In diesem Bereich wurden die tieferen Bohrungen B 20 bis B 27 abgeteuft.

Oberflächennah wurde hier eine **Mutterbodendecke** in einer schwankenden Stärke von 0,25 m bis 0,40 m aufgeschlossen.

Unterlagernd hierzu folgen bei den Bohrungen B 21, B 23b, B 24, B 25 und B 26a zunächst schwach tonige bis tonige, schwach sandige bis sandige, teils schwach kiesige bis kiesige Schluffe. Es handelt sich nach mündlich erhaltenen Angaben um einen Bodenauftrag aus gewachsenen Decklehmen des benachbarten Bauvorhabens Zentrallager.

Hierunter bzw. unter der Mutterbodendecke folgen die *künstlich angefüllten* bindigen und körnigen Bodenschichten der eigentlichen Altablagerung. Der Kornverteilung nach Feldansprache handelt es sich hierbei in geringerem Umfang um schwach tonige bis stark tonige, schwach sandige bis stark sandige, teils schwach kiesige bis kiesige Schluffe sowie um schwach sandige und teils schwach kiesige Tone, deren wie zuvor abgeschätzte Konsistenzen "steif-weich" bis "halbfest" sind.

Mit größerem Mengenanteil wurden sehr schwach schluffige bis stark schluffige, schwach kiesige bis stark kiesige Sande, sehr schwach schluffige bis stark schluffige Kiessande, schwach schluffige, schwach sandige, steinige Kiese sowie Steine-Sandund Steine-Kies-Gemenge aufgeschlossen. Die beim Kleinrammbohren abgeschätzte Lagerungsdichte dieser Schichten schwankt zwischen "mitteldicht" und "mitteldicht-dicht".

Als Fremdbestandteile wurden Ziegel-, Pflanzen-, Holzkohle-, Holz-, Schwarzdecken-, Schlacke-, Beton-, Mörtel-, Plastik-, Glas-, Schamottstein-, Bimsstein-, Stoff-, Keramik- und Kohlereste sowie Ziegelschutt, Betonschutt und Holz (Stämme oder Balken) erbohrt.

Hierunter folgt der eindeutig gewachsene Boden. Dieser wird bis zu den Bohrendtiefen von 11,00 m aus den körnigen Mittel- und Niederterrassensedimenten der Sieg aufgebaut. Es handelt sich hierbei um **sehr schwach schluffige** bis **schluffige**, vereinzelt **schwach steinige Kiessande**. Die wie zuvor abgeschätzte Lagerungsdichte ist "mitteldicht" bis "sehr dicht".

4.3 Grund- und Schichtenwasser

Grund- bzw. Schichtenwasser wurde in den Bohrungen im Verlauf der Geländearbeiten nicht beobachtet.

Dies wird durch die momentan niedrigen Wasserstände von Rhein und Sieg bestätigt.

5 Chemische Untersuchung der Bodenluft und des Bodens

5.1 Vorgehensweise

Die Bodenluft wurde im Jahr 1998 durch das IB Batke beprobt und chemisch auf die Bodenlufthauptkomponenten und Spurengase (seinerzeit Gfl Bonn) untersucht.

Im Rahmen unserer Untersuchungen wurden die Bohrungen zu temporären Bodenluftmessstellen ausgebaut und durch das Labor Eurofins beprobt. Die Hauptkomponenten wurden vor Ort mit dem Deponiegasmonitor GA 94 gemessen, die Spurengase wurden über eine Anreicherung auf Aktivkohleröhrchen im Labor bestimmt.

5.2 Ergebnisse der Untersuchungen der Bodenluft – Hauptkomponenten

Die Ergebnisse sind den Anlagen 3.1 und 3.2 zu entnehmen, nachfolgend werden sie zusammen mit den Ergebnissen aus dem Jahr 1998 tabellarisch dargestellt. Die Probenentnahmeprotokolle sind den Anlagen 3.3 bis 3.10 zu entnehmen. Liegen die aktuellen Bohrungen räumlich nahe bei Bohrungen aus dem Jahr 1998 dann wurden sie zur besseren Vergleichbarkeit der Werte in der Tabelle entsprechend untereinander angeordnet und eingerahmt.

Bohrung	Bodenluftkomponenten					
	CO ₂	O ₂	N ₂	CH ₄	H ₂ S	
BL – AB 15	4,3	15,4	80,3	< 0,1	0,0	
BL – GM 1	2,8	18,5	78,8	< 0,1	0,0	
BL – GM 2	7,9	5,0	82,7	4,4	0,0	
B 26a	7,5	1,4	85,9	5,2	< 2 ppm	
B 27	12,1	3,1	84,8	< 0,1	< 2 ppm	
BL – AB 16	13,2	4,4	81,8	< 0,1	0,0	
B 22	12,0	1,9	71,7	14,4	< 2 ppm	
BL – AB 3b	15,7	1,5	78,0	4,8	0,0	
B 20a	15,6	0,1	73,3	11,0	< 2 ppm	
B 21	18,9	0,2	68,6	12,3	< 2 ppm	
B 23b	12,0	< 0,1	78,7	9,3	< 2 ppm	
BL – AB 4	3,9	16,5	79,6	< 0,1	0,0	
BL – AB 5	5,9	14,6	79,4	< 0,1	0,0	
B 24	10,8	1,7	87,5	< 0,1	< 2 ppm	
B 25	6,8	8,8	84,4	< 0,1	< 2 ppm	
Scheffer -	0,25 – 3,00	17,0 – 21,0	76,0 – 83,0			
Schachtschabel	(6,00)					

Anmerkung zur Probenbezeichnung: Die kursiv gesetzten Werte für N_2 wurden rechnerisch als Differenz zu 100 % ermittelt. Der Zusatz in der Bohrungsbezeichnung GM bedeutet Probennahme auf Gasmaus (1998) und der Zusatz AB Probennahme auf Airbag (1998).

5.3 Ergebnisse der Untersuchungen der Bodenluft – Spurengase

Die Ergebnisse sind ebenfalls den Anlagen 3.1 und 3.2 zu entnehmen, nachfolgend werden sie zusammen mit den Ergebnissen aus dem Jahr 1998 tabellarisch dargestellt.

Liegen die aktuellen Bohrungen räumlich nahe bei Bohrungen aus dem Jahr 1998 so wurden sie entsprechend untereinander in der Tabelle angeordnet und eingerahmt.

Bohrung	Bodenluft - Spurengase				
	Summe BTEX	Summe leichtflüchtige	Summe LCKW		
		organische Verbindungen			
BL 15	< 0,08	0,79	0,008		
BL 1	< 0,08	0,99	0,075		
BL 2	0,02	51,45	0,196		
B 26a	0,059		n.n.		
B 27	0,15		n.n.		

Seite 7 von 16 zum Gutachten Nr. 20131016 vom 17. März 2014

Bohrung	Bodenluft - Spurengase				
	Summe BTEX	Summe leichtflüchtige	Summe LCKW		
		organische Verbindungen			
BL 16	0,10	8,92	0,129		
B 22	n.n.		n.n.		
BL 3b	0,05	63,29	0,054		
B 20a	0,118		n.n.		
B 21	0,239		n.n.		
B 23b	n.n.		n.n.		
BL 4	0,40	6,21	0,093		
BL 5	0,04	0,99	0,180		
B 24	n.n.		n.n.		
B 25	n.n.		n.n.		

5.4 Ergebnisse der Untersuchungen der Bodenproben

Der Boden im oberflächennahen Bereich soll im Zuge des Baus eines Wendehammers aufgenommen werden. Der Aushub ist dann einer fachgerechten Entsorgung zuzuführen.

Hierzu wurden die Proben aus dem oberflächennahen Bodenbereich zu einer Mischprobe vereinigt und diese auf die Parameter der LAGA Liste für Boden und DepV chemisch untersucht. Die Ergebnisse sind den Anlagen 3.11 bis 3.15 zu entnehmen. Die untersuchten Proben sind der Anlage 2 zu entnehmen.

In der Mischprobe MP Aushub 1 wurden folgende Konzentrationen ermittelt:

			L	AGA Boo	den (199	7)		Dep\	/ 2011	
	Dim	MP Aushub 1	Z 0	Z 1.1	Z 1.2	Z 2	DK 0	DK I	DK II	DK III
Trockensub.	Gew. % OS									
EOX	mg/kg	< 1	1	3	10	15				
Glühverlust	Gew.% OS	3,1					3	3	5	10
TOC	Gew. % TR	0,5					1	1	3	6
Lipophile Stoffe	Gew.% OS	0,03					0,1	0,4	0,8	4
Arsen	mg/kg	11,1	20	30	50	150				
Blei	mg/kg	32	100	200	300	1000				
Cadmium	mg/kg	0,4	0,6	1	3	10				
Chrom ges.	mg/kg	25	50	100	200	600				
Kupfer	mg/kg	19	40	100	200	600				
Nickel	mg/kg	28	40	100	200	600				
Thallium	mg/kg	< 0,2	0,5	1	3	10				
Quecksilber	mg/kg	0,11	0,3	1	3	10				
Zink	mg/kg	84	120	300	500	1500				
MKW ₁₀₋₄₀	mg/kg	< 40	100	300	500	1000	500			
PAK ₁₆	mg/kg	1,2	1	5	15	20	30			
B[a]p.	mg/kg	0,1		< 0,5	< 1					
LHKW	mg/kg	n.n.	< 1	1	3	5				
BTXE	mg/kg	n.n.	< 1	1	3	5	6			
Cyanid ges.	mg/kg	< 0,5	1	10	30	100				
PCB 6	mg/kg	n.n.	0,02	0,1	0,5	1	1			
pH-Wert		8,0	6,5-9	6,5-9	6-12	5,5-12	5,5-13	5,5-13	5,5-13	4-13
el. Leitf.	μs/cm	106	500	500	1000	1500				-
TOC	mg/l							20	100	-
DOC	mg/l	2,3					50	50	80	100
Fluorid	mg/l	0,57					1	5	15	50
Chlorid	mg/l	< 1	10	10	20	30	80	1.500	1.500	2.500
Sulfat	mg/l	2	50	50	100	150	100	2.000	2.000	5.000
Cyanid ges.	μg/l	< 5	< 10	10	50	100				

Seite 8 von 16 zum Gutachten Nr. 20131016 vom 17. März 2014

			LAGA Boden (1997)				Dep\	/ 2011		
	Dim	MP Aushub 1	Z 0	Z 1.1	Z 1.2	Z 2	DK 0	DK I	DK II	DK III
Cyanid Ifr.	μg/l	< 5					10	100	500	1.000
Phenolindex	μg/l	< 10	< 10	10	50	100	100	200	50.000	100.000
Arsen	μg/l	1	10	10	40	60	50	200	200	2.500
Blei	μg/l	< 1	20	40	100	200	50	200	1.000	5.000
Cadmium	μg/l	< 0,3	2	2	5	10	4	50	100	500
Chrom ges.	μg/l	1	15	30	75	150	50	300	1.000	7.000
Kupfer	μg/l	< 5	50	50	150	300	200	1.000	5.000	10.000
Nickel	μg/l	< 1	40	50	150	200	40	200	1.000	4.000
Quecksilber	μg/l	< 0,2	0,2	0,2	1	2	1	5	20	200
Thallium	μg/l	< 0,2	< 1	1	3	5		-		
Zink	μg/l	< 10	100	100	300	600	400	2.000	5.000	20.000
Antimon	μg/l	< 1					6	30	70	500
Barium	μg/l	8					2.000	5.000	10.000	30.000
Molybdän	μg/l	1					50	300	1.000	3.000
Selen	μg/l	3					10	30	50	700
wasserl. Ant.*	mg/l	64					400	3.000	6.000	10.000
LAGA Ein- stufung	-	Z 1.1	-	-	_	_	_	-	-	
Deponieklasse		(DK II)								

Wie aus der Tabelle ersichtlich ist, führen die quantifizierten Konzentrationen der Parameter Glühverlust und PAK nach EPA zu folgender Einstufung der Mischprobe:

"MP Aushub 1" als LAGA Boden Z 1.1 bzw. DK II nach DepV. Wenn der in der Pflugzone zu erwartende, durch Pflanzen- und Wurzelreste leicht erhöhte Wert für Glühverlust vernachlässigt werden kann, ist auch eine Einstufung in DK 0 denkbar.

Ansonsten erfolgt eine Einstufung in DK II, begründet alleine durch die bestimmte Konzentration des Glühverlusts.

Eine Überschreitung des DK I – Wertes ist mit Zustimmung der zuständigen Behörden zulässig, wenn die Überschreitung durch elementaren Kohlenstoff verursacht werden oder die biologische Abbaubarkeit des Trockenrückstandes (AT4 – Wert) eine Konzentration von 5 mg O₂/g TS und der Brennwert 6.000 kJ/kg TS unterschreitet.

Wir erwarten, dass diese Werte unterschritten werden. Hierfür ist eine ergänzende Analytik auf die Parameter AT4 und Heizwert durchzuführen.

6 Diskussion der Ergebnisse

6.1 Bodenluft

Hauptkomponenten: Die Bodenluft wurde im Jahr 1998 durch das IB Batke beprobt und chemisch auf die Bodenlufthauptkomponenten und Spurengase untersucht. Hierbei zeigte sich eine veränderte Bodenluft im Bereich der Bohrungen B 2, B 3b und B 16, wobei eine Methangasbildung nur in B 2 und B 3b nachgewiesen wurde. Die aktuell durchgeführten Messungen zeigen, dass in den Bohrungen B 20a bis B 27 eine veränderte Bodenluft vorliegt.

Die räumliche Verteilung der Bodenluftveränderung ist aus der Anlage 1.2 ersichtlich. Demnach liegen die Bohrungen B 1, B 4, B 5 und B 15 außerhalb eines Bereiches mit veränderter Bodenluft.

Seite 9 von 16 zum Gutachten Nr. 20131016 vom 17. März 2014

Der sich in erster Linie durch eine veränderte Bodenluft durch erhöhte CO₂-Gehalte abgrenzbare Bereich ist orange schraffiert und umfasst die Bohrungen B 2, B 3 sowie B 20 bis B 27.

Innerhalb dieser Fläche wurden weiterhin Bereiche kartiert in denen im Altablagerungskörper zusätzlich eine verstärkte Methangasproduktion abläuft. Die Methangasbildung wurde in den Bohrungen B 20, B 21, B 22, B 23 und B 26 und nachgewiesen und zeigt höhere Konzentrationen als im Jahr 1998.

Je nach Interpretation der Messergebnisse handelt es sich, wie in Anlage 1.2 dargestellt ist, um zwei Bereiche oder einen größeren zusammenhängenden Bereich.

Spurengase: Für die Bewertung von Spurengaskonzentrationen in der Bodenluft wurden seitens der LANUV, des HLUG veröffentlichen Publikationen sowie die etwas ältere ALEX Liste (Rheinlandpfalz) zur Bewertung herangezogen. Zusammenfassend kann daraus abgeleitet werden, dass unter einer Konzentration von 1 mg/m³ bzw. 5 mg/m³ keine weiteren Maßnahmen abzuleiten sind.

Die Spurengase zeigen in beiden Untersuchungsphasen insgesamt geringe Konzentrationen an, die deutlich unter 1 mg/m³ liegen. Die seinerzeit bestimmten "leichtflüchtigen organischen Verbindungen" zeigen ein Maximum bei B 2 und B 3b sowie geringere Erhöhungen bei B 4 und B 16.

Dieses seinerzeit bestimmte Maximum wird durch die Ergebnisse der Bodenluft in den Bohrungen B 20, B 21 und B 26 bestätigt. In diesen Bohrungen wurden nur BTEX jedoch keine LHKW nachgewiesen.

Zusammenfassung: Im untersuchten Areal wurde eine größere Fläche mit veränderten Bodenlufthauptkomponenten kartiert. Diese zeichnet sich zunächst durch eine erhöhte CO₂-Konzentration aus. Hierin liegen kleinere Flächen, die eine deutliche Methangasproduktion mit deutlich höheren Konzentrationen als 1998 aufweisen.

In den Zentren mit erhöhter Methangasbildung wurden zudem leicht erhöhte BTEX-Konzentrationen quantifiziert. Der Parameter LHKW wurde in der Bodenluft unterhalb der Nachweisgrenzen bestimmt.

Diese Beobachtungen zeigen, dass sich die Altablagerung zwischen den Jahren 1998 und 2014 weiterentwickelt hat, da die Bodenluftkomponente Methan nun in höheren Konzentrationen vorliegt.

Aus den höheren Konzentrationen kann abgeleitet werden, dass sich das betroffene Bodenvolumen und somit die Fläche mit Methangas in der Bodenluft vergrößert hat.

6.2 Boden

Die Bodenproben der oberflächennahen Schichten wurden zur Mischprobe MP Aushub 1 vereinigt und daran die Parameter der LAGA Liste für Boden und die der DepV untersucht.

Seite 10 von 16 zum Gutachten Nr. 20131016 vom 17. März 2014

Die Ergebnisse ergaben eine Einstufung in LAGA Z1.1 und Deponieklasse DK II (wegen des Glühverlusts). Hinsichtlich der Deponieklasse erwarten wir noch eine günstigere Einstufung nach Durchführung der Analysen auf Brennwert und AT4 (erwartet wird eine mögliche Einstufung in DK 0).

Kontaminationen, organoleptische Auffälligkeiten oder untergemengte Fremdbestandteile, die eine Entsorgung der Böden sowie eine besondere, fachtechnische Begleitung erfordern, wurden in den oberflächennahen Schichten (meist umgelagerte Decklehme) nicht beobachtet.

Die anfallenden Aushubmassen sind generell entsprechend den Vorgaben des Kreislaufwirtschafts- und Abfallgesetzes sowie dessen Unterverordnungen fachgerecht zu entsorgen.

Nach dem vorbeschriebenen Analyseergebnis sind die künstlich angefüllten Böden im Baufeld in die Abfallschlüsselnummer AVV 17 05 04 (Boden und Steine mit Ausnahme derjenigen, die unter 17 05 03 (= die gefährliche Stoffe enthalten) fallen) einzustufen.

7 Umwelttechnische Bewertung

Auf der Fläche der Altablagerung 5209/118 wurden künstlich angefüllte Böden bis in eine Tiefe von 10,6 m aufgeschlossen.

es ist wahrscheinlich, dass die Auskiesung seinerzeit bis knapp über den Grundwasserspiegel (angenommen werden rund 58 mNN) geführt wurde. Die Bohrung B 23b belegt diese Annahme mit der Tiefenlage des gewachsenen Bodens von 58,81 mNN (tiefstes Niveau).

Bodenluft: Die Zusammensetzung der Bodenlufthauptkomponenten zeigt, dass in den Anfüllungen aerobe und anaerobe Abbauprozesse der organischen Inhaltsstoffe unter einer mäßigen (B 26) und starken (B 20, B 21, B 22 und B 23) Methangasbildung ablaufen.

Die Spurengase wurden in geringen Konzentrationen nachgewiesen. Legt man unterschiedliche Prüf- und Grenzwerte an, so zeigt sich dass diese sämtlich unterschritten werden, wodurch ein Gefahrenverdacht für diese Stoffe (BTEX und LHKW) in der Regel ausgeräumt ist.

Das Gefährdungspotenzial der Bodenlufthauptkomponenten über den Gefährdungspfad Bodenluft – Gebäude – Mensch ist im Bereich der Bohrungen B 20, B 21, B 22, B 23 und B 26 als hoch anzusehen.

Bei den Bohrungen B 24, B 25 und B 27 ist ein mäßiges und außerhalb der eingetragenen Fläche ein latentes Gefährdungspotenzial gegeben.

Boden und Grundwasser: Für das Umweltmedium Boden besteht wegen des erfolgten Bodenauftrags oberflächennah nur ein latentes Gefährdungspotenzial, da es sich um gewachsenen Boden ohne Fremdstoffe handelt.

Bestätigt wird dies durch die Analyse der Mischprobe MP Aushub 1 welche durch ihre LAGA – Einstufung eine geringe Belastung (Z1.1) belegt.

Seite 11 von 16 zum Gutachten Nr. 20131016 vom 17. März 2014

Die tieferen Bodenschichten waren organoleptisch teilweise auffällig (KW-Geruch, Farbe, Zusammensetzung usw.). Hier besteht unseres Erachtens ein latentes bis deutliches Gefährdungspotenzial. Zur Eingrenzung dessen, sind jedoch umfangreiche chemische Untersuchungen erforderlich.

Die Basis der Altablagerung wurde in früheren Zeiträumen offensichtlich nicht durch das Grundwasser eingestaut, so dass eine direkte Auswaschung von Schadstoffen nicht zu besorgen war.

Bei den höheren Grundwasserständen bis zu einem Niveau von 59,8 mNN wird ein Einstau der tieferen Bereiche möglich. Die Einstau-Zeiträume begrenzen sich dann allerdings auf erfahrungsgemäß kurze Zeiträume mit hohen Grundwasserständen (HGW).

Durch versickerndes Niederschlagswasser können jedoch eine Mobilisierung und ein Transport von Schadstoffen in die Tiefe und somit auch in den Grundwasserstrom stattfinden.

Hierdurch sowie durch den Einstau bei hohen Grundwasserständen kann eine Beeinträchtigung der Grundwasserqualität nicht ausgeschlossen werden.

Für eine Abschließende Bewertung der Grundwassersituation empfehlen wir die Untersuchung des Grundwassers im Abstrombereich.

8 Tiefbautechnisches Gutachten zum Straßenbau

Eine Planung zum Straßenbau mit Wendehammer liegt noch nicht vor. Es wird davon ausgegangen, dass die Straße "Am Rosenhain" erweitert und ausgebaut wird und im Bereich der Plateaufläche der Altablagerung einen Wendehammer erhält.

8.1 Regelwerke und Richtlinien zur Bewertung des Straßenaufbaus

Regelwerke zur Frostempfindlichkeit der Untergrundes, den Bauklassen und Mindestaufbaustärken, der Frostsicherheit des verwendeten Materials, der Prüfung auf Teerbestandteile der Schwarzdecken und die umweltverträgliche Verwertung von Ausbaustoffen – RuVA-StB 01 werden nachfolgend erläutert.

8.2 Frostempfindlichkeit des Untergrundes – ZTVE-StB 09

Die Frostempfindlichkeitsklassen werden in dem Regelwerk "Zusätzliche technische Vertragsbedingungen und Richtlinien für Erdarbeiten im Straßenbau ZTVE-StB 94" in der Fassung vom Juli 1997 in Tabelle 1, Abschnitt 2.3.3.1 "Frostempfindlichkeit von Böden" geregelt. Die nachfolgende Tabelle zeigt die Abhängigkeit der Frostempfindlichkeitsklasse von den Bodengruppen nach DIN 18.196.

Klasse	Frostempfindlichkeit	Bodengruppen nach DIN 18.196
F 1	nicht frostempfindlich	GW, GI, GE
		SW, SI, SE
F 2	gering bis mittel frostempfindlich	TA, OT, OH, OK
		ST, GT, SU, GU
F 3	sehr frostempfindlich	TL, TM, UL, UM, UA, OU,
		ST*, GT*, SU*, GU*

8.3 Bauklassen und Mindestaufbaustärken – RStO-01 / RStO-12

Der Aufbau von innerörtlichen und außerörtlichen Straßen wurde bisher gemäß den "Richtlinien für die Standardisierung des Oberbaues von Verkehrsflächen – RStO-01" vom September 2001 geregelt.

In Tabelle 7, Abschnitt 3.2.3 "Mehr- und Minderdicken" wird für den untersuchten Bereich in Bild 6 "Frosteinwirkungszonen" die Zone I angegeben.

Die Straße wird unseren Annahmen zufolge der Bauklasse V zugeordnet. Demzufolge ergibt sich nach Tabelle 6, Abschnitt 3.2.3 "Mehr- und Minderdicken" eine Mindestdicke des frostsicheren Straßenaufbaus in Abhängigkeit des gewachsenen Bodens / Auflagers. Diese sind in der nachfolgenden Tabelle aufgeführt.

Frostempfindlichkeitsklasse	Dicke des frostsicheren Straßenaufbaus
	Klasse V bzw. Bk 0,3 bis 1,0
F 2	40 cm bzw. 40 bis 50 cm
F 3	50 cm bzw. 50 bis 60 cm

In der Neufassung der RStO-12 werden keine Bauklassen mehr verwendet, stattdessen wurden Belastungsklassen eingeführt. Die Bauklasse V der RStO-01 entspricht in etwa der Belastungsklasse Bk 0,3 bis 1,0 der RStO-12.

Hieraus ergeben sich die gleichen, in der Tabelle aufgeführten Dicken des frostsicheren Straßenaufbaus.

Nach der Karte der BAST ist im Baufeld die Frosteinwirkungszone I anzusetzen, woraus keine zusätzliche Verstärkung erforderlich wird.

8.4 Frostsicherheit der verwendeten Straßenaufbaumaterialien – ZTVT-StB 95

Die Eignung von Materialien für den Straßenaufbau in Frostschutz- und Tragschichten müssen den Richtlinien für Frostsicherheit in der ZTVT-StB 95 "Zusätzliche Technische Vertragsbedingungen und Richtlinien für Tragschichten im Straßenbau" von 1995 genügen.

In Abschnitt 2.1 "Frostschutzschichten" wird neben den Kornfraktionen Sand, Kies, Steine ein Feinkornanteil (Schluff) von maximal 7 % vorgeschrieben.

In Abschnitt 2.2 "Kiestragschichten und Schottertragschichten" werden weitere Materialanforderungen formuliert. Auch hier ist der Maximalwert für Feinkornanteil (Schluff) von 7 % einzuhalten.

Die Anteile der Kornfraktionen von Sand, Kies, Steine, getrennt nach Kies- und Schottertragschichten, werden in Abhängigkeit der Lieferkörnung (0/32, 0/45 oder 0/56) angegeben.

9 Bewertung der Bohrergebnisse – Straßen- und Gehwegaufbau

In der Anlage 2 sind die erbohrten Bodenschichten des oberen Schichtbereichs in der Abwicklung des möglichen Wendehammers dargestellt.

9.1 Bodenklassen nach DIN 18.300 und Bodengruppen nach DIN 18.196

Die künstlich angefüllten grobkörnigen Materialien (A [GW, SW]) rechnen bei Fehlen von Steinen Ø > 63 mm zur Klasse 3 (leicht lösbarer Boden), verursachen beim Lösen überwiegend einen Aufwand entsprechend Klasse 5 (schwer lösbarer Boden), bindige Anteile (A [UL, UM]) entsprechend Klasse 4 (mittelschwer lösbarer Boden).

Seite 13 von 16 zum Gutachten Nr. 20131016 vom 17. März 2014

Die tonig-sandigen Schluffe (TL, UL, UM) rechnen bei halbfester und steifer Konsistenz zur Klasse 4 (mittelschwer lösbarer Boden). Bei weicher oder noch ungünstigerer – hier nicht erbohrter – Konsistenz erfolgt unter Schichtenwasser der Übergang zur Klasse 2 (fließende Bodenarten), die eindeutig bei weich-breiiger Konsistenz vorliegt. Durch Niederschläge wie auch Fehler bei der Vorgehensweise (z.B. ungeschützte Zwischenlagerung) kann Material der Klasse 4 in Klasse 2 (fließende Bodenarten) entsprechend weich-breiiger Konsistenz umgewandelt werden. Dies hängt jedoch stark von der Arbeitsweise der ausführenden Firma ab und fällt dementsprechend in deren Verantwortungsbereich.

Saubere und schwach schluffige Sande bis max. 15% Feinanteil (SE, SU) rechnen zur Klasse 3 (leicht lösbarer Boden) und bei stärker schluffigen Zwischenlagen im Übergangsbereich (SU*) Klasse 4 (mittelschwer lösbarer Boden).

Die sandigen Kiese, kiesigen Sande und gleichkörnigen Kiese (GW, GI, SW, SE, SU) sind größtenteils - bei geringeren Schluffanteilen - Klasse 3 (leicht lösbarer Boden), und bei stärker schluffigen Zwischenlagen (GU*, SU*) Klasse 4 (mittelschwer lösbarer Boden).

Bereichsweise können sie bei örtlichen Grobkies- und Steineinlagerungen der Klasse 5 (schwer lösbarer Boden) zugeordnet werden.

9.2 Erdbautechnische Eigenschaften und bodenmechanische Kennwerte Künstliche Anfüllungen: Diese sind inhomogen zusammengesetzt, liegen oberflächennah bis in Tiefen von rund 10,6 m und nach den Beobachtungen beim Kleinrammbohren in "± mitteldichter" Lagerung vor.

Es handelt sich um einen unzuverlässigen Baugrund, welcher durch anhaltende Deponiegasbildung über längere Zeiträume betrachtet örtlich stärker setzungsfähig ist und weiterhin gering tragfähig sein kann. Diese Schichten werden durch das Bauvorhaben erreicht und müssen beim Aufbau der Straße berücksichtigt werden.

Kennwerte – künstliche Anfüllungen					
Feuchtraumgewicht cal. γ _f 18 – 20 kN/m ³					
Reibungswinkel	cal. φ	27,5° - 32,5°			
Steifeziffer	cal. E	2 – 20 MN/m ²			

Schluff, ± schwach tonig, sandig: Es handelt sich um einen feinkörnigen, wasser- und störungsempfindlichen Boden. Besonders bei geringen Tonanteilen sind Wasserbindevermögen und Plastizität (Bildsamkeit) gering. Er ist vor Aufweichung zu schützen, da er bereits bei einer sehr geringen Wassergehaltserhöhung, z.B. durch Niederschläge oder Einwirkung von Schichtenwasser in weiche oder breiige Konsistenz umschlägt. Sollte bereits Aufweichung eingetreten sein, so ist die aufgeweichte Schicht ggf. vor Fortführung der Arbeiten von Hand abzuschälen.

Weiterhin ist die Bewegungsempfindlichkeit des Materials hervorzuheben. Schon bei normalen Wassergehalten entsprechend steifer Konsistenz führt mechanische Beanspruchung, z.B. durch Rüttelverdichtung, ohne zusätzlichen Wasserzutritt zu einer Konsistenzverschlechterung bzw. Umwandlung in einen puddingähnlichen Zustand (Thixotropie). Bei Wassersättigung tritt dieser Vorgang verstärkt auf.

Seite 14 von 16 zum Gutachten Nr. 20131016 vom 17. März 2014

Rüttelverdichtung ist daher zu vermeiden, ferner darf die Sohlfläche nicht befahren werden. Schwach tonige Schluffe sind außerdem leicht erodierbar.

Der Aushub mit Bagger sollte von einem Standpunkt außerhalb der Baugrube erfolgen. Unbedingt sollte ein Baggerlöffel ohne Zähne verwendet werden, welcher einen präzisen Aushub gestattet und das Durchpflügen der Gründungsfläche vermeidet.

Für die Stabilisierung flächiger Baugrubenteile haben sich gut abgestufte Lava- oder Kiessandgemenge (z.B. Körnung 0/56) bewährt. Nach Bedarf ist eine Wasserhaltung zur Abführung von Tagwasser zu installieren. Fundamente können später durch die körnige Schutzschicht hindurch geschachtet werden.

Bei halbfester und steifer Konsistenz sind Decklehme (Löß, Lößlehm) als normal bis mäßig tragfähiger Baugrund zu veranschlagen. Bei – hier nicht erbohrter – weicher Konsistenz steigt die Setzungsfähigkeit und sinkt die Tragfähigkeit:

Kennwerte – Schluffe (Decklehm; Löß und Lößlehm)					
Feuchtraumgewicht aal. γ _f 20 kN/m ³					
Raumgewicht un	ter Auftrieb	cal. γa	10 kN/m ³		
Reibungswinkel	halbfest / steif	cal. φ	27,5° / 27,5°		
Kohäsion	halbfest / steif	cal. c	12 / 10 kN/m ²		
Steifeziffer	halbfest / steif	cal. E	18 / 12 MN/m ²		

Sande: Die in den Bohrungen angetroffenen, meist mitteldicht bis dicht gelagerten, bereichsweise ± schwach kiesigen und sehr schwach schluffigen Sande sind wegen ihrer Lagerungsdichte als scherfest, gering setzungsfähig und daher gut tragfähig einzustufen.

Beim Anschneiden unter schichten- bzw. Grundwasser sowie im nicht entwässerten Zustand liegt dagegen ausgesprochene Fließneigung vor. Bei Austrocknung neigen die Sande in Böschungen zum Auslaufen und zur oberflächennahen Auflockerung.

Der Aushub mit Bagger sollte auch hierin von einem Standpunkt außerhalb der Baugrube erfolgen. Es ist vorteilhaft einen Baggerlöffel ohne Zähne zu verwenden, welcher einen präzisen Aushub gestattet und das Durchpflügen der Gründungsfläche vermeidet. Dennoch auftretende Auflockerungen können bei sehr geringen Feinkornanteilen durch Nachverdichten mit einer "flach" wirkenden Rüttelplatte einfach beseitigt werden.

Bei höheren Feinkornanteilen (i.d.R. mehr als 30 %) gelten die bei den Schluffen aufgeführten Angaben sinngemäß.

Kennwerte – Sande					
Feuchtraumgewicht	cal. γ _f	19 – 20 kN/m ³			
Raumgewicht unter Auftrieb	cal. γa	10 – 11 kN/m ³			
Reibungswinkel	cal. φ	35,0°			
Steifeziffer	cal. E	30 – 80 MN/m ²			

Seite 15 von 16 zum Gutachten Nr. 20131016 vom 17. März 2014

Schluffige Sande und Kiese: Die Sande und kiesigen Sande sind bei geringen Schluffanteilen von unter 10% bis 15% und mindestens "dichter" Lagerung als scherfest, gering setzungsfähig und daher gut tragfähig einzustufen.

Bei Austrocknung und sehr geringen Schluffanteilen neigen die Sande und Kiese in Böschungen zum Auslaufen und zur oberflächennahen Auflockerung. Bei höheren Schluffanteilen ist von einer gewissen Aufweichungsempfindlichkeit auszugehen. Die geotechnischen Eigenschaften dieser stärker schluffigen Sande und Kiese tendieren dann mehr zu denen bindiger Böden.

Auflockerungen können durch Nachverdichten mit einer kleinen Rüttelplatte leicht beseitigt werden.

Kennwerte – Sande und Kiese					
Feuchtraumgewicht cal. γ _f 21 kN/m ³					
Raumgewicht unter Auftrieb	cal. γa	10 kN/m ³			
Reibungswinkel	cal. φ	35,0° - 37,5°			
Steifeziffer	cal. E	50 – 80 MN/m ²			

9.3 Frostempfindlichkeit des gewachsenen Untergrundes

Wie aus der Anlage 2 ersichtlich ist, werden die erbohrten künstlich angefüllten Schluffe den Bodengruppen UL bzw. UM entsprechend der Frostempfindlichkeitsklasse F 3 "sehr frostempfindlich" und die Sand- bzw. Kiessandschichen entsprechend der vorliegenden Schluffanteile den Klassen GW, GU und GU*, entsprechend der Frostempfindlichkeitsklassen F 1, 2 und 3 zugeordnet.

9.4 Soll – Aufbaustärke und vorhandene Aufbaustärke

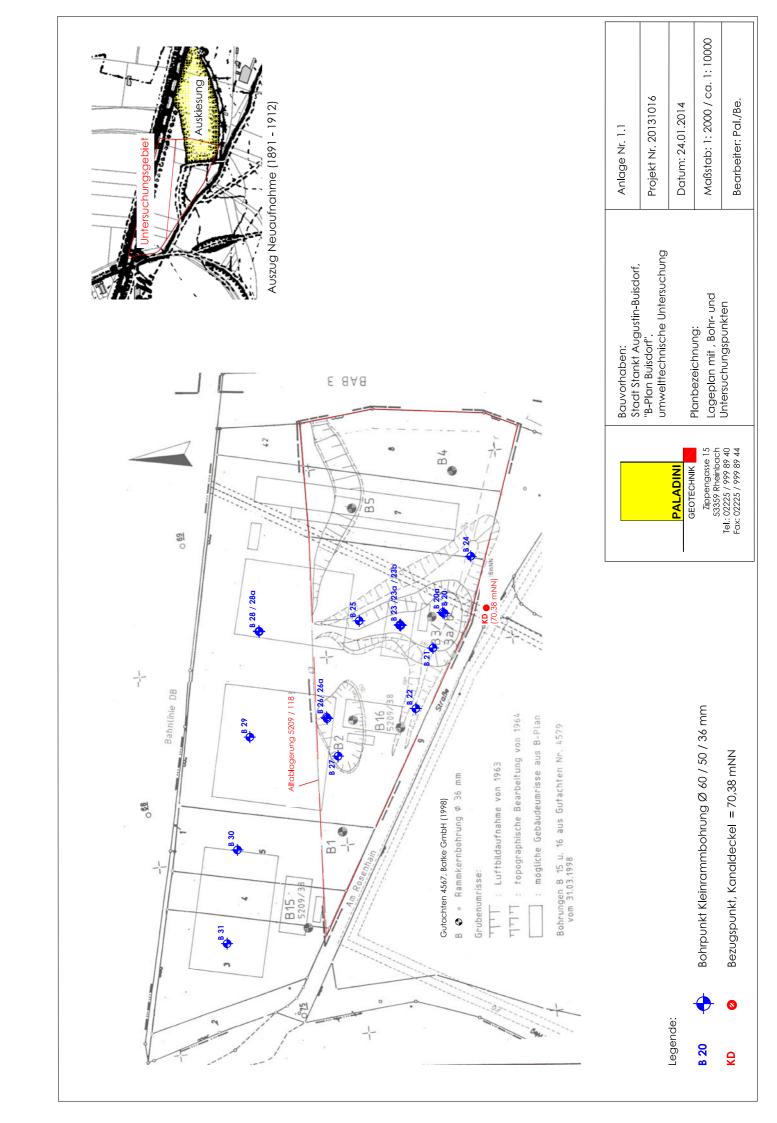
Gemäß der RStO-01 und der zwischenzeitlich veröffentlichten RStO-12 wird bei den Frostempfindlichkeitsklassen F 2 / 3 eine Mindestaufbaustärke der Frostschutzschicht (A) von 0,50 m / 0,60 m gefordert.

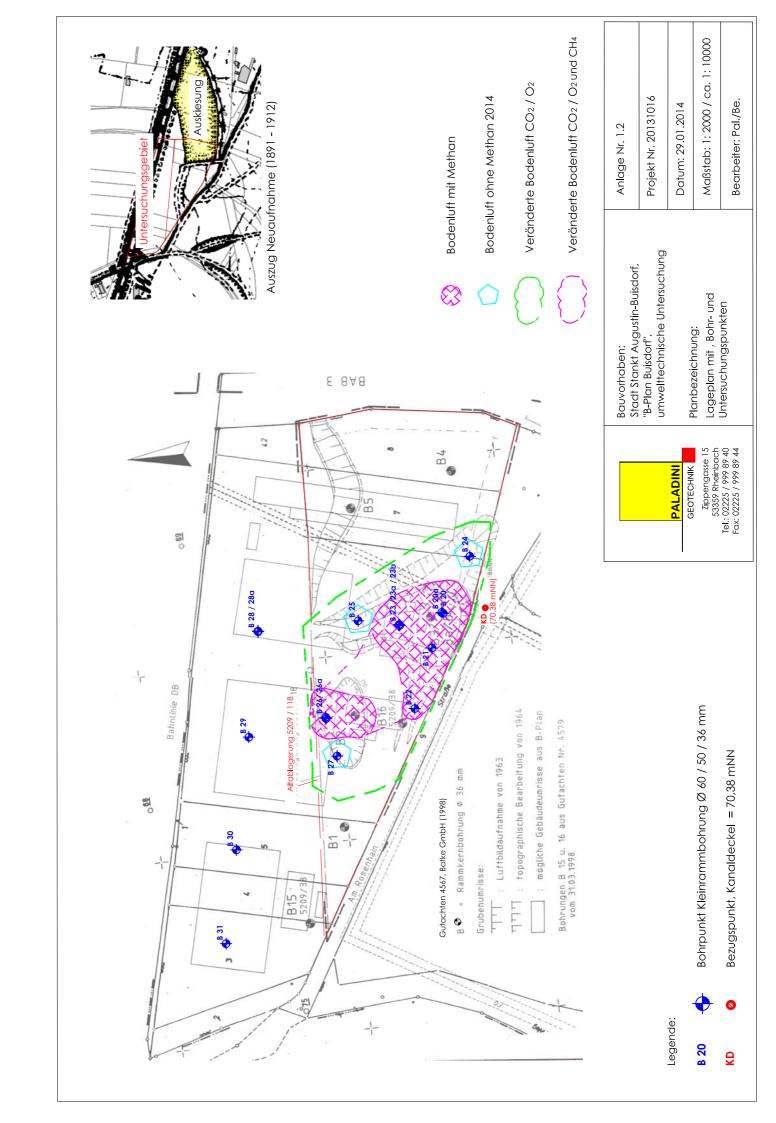
Aufbaustärke: Wir empfehlen im Sinne einer einheitlichen, flächenhaften Vorgehensweise eine Schichtstärke des frostsicheren Straßenaufbaus von mindestens A = 0,60 m herzustellen, da im gewachsenen und künstlich angefüllten Planum F 1 bis F 3 – Böden anstehen. Je nach Gradiente der Straße und des Wendehammers wird zusätzlich ein Unterbau erforderlich, welcher mögliche Setzungen vergleichmäßigt.

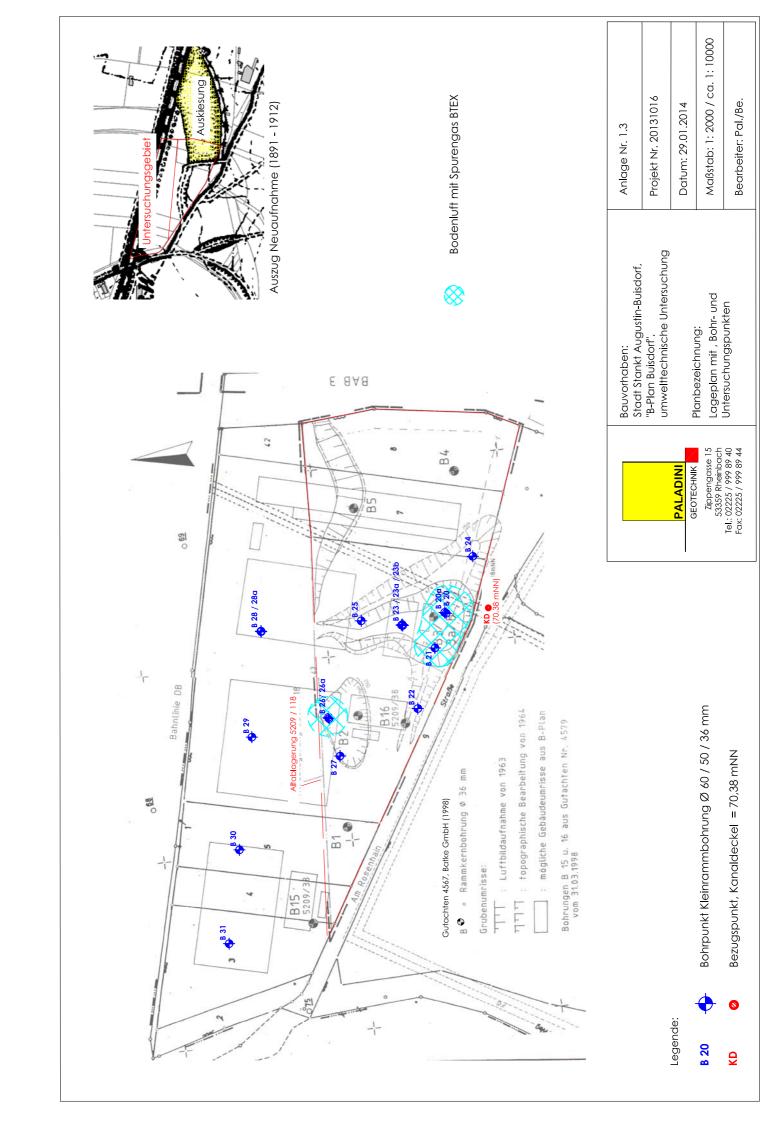
Denkbar ist an dieser Stelle der Einbau eines stärkeren Bodenersatzpolsters oder einer Bodenverbesserung durch Rüttelstopfpfähle in Verbindung mit einem geringmächtigen Bodenersatzpolster.

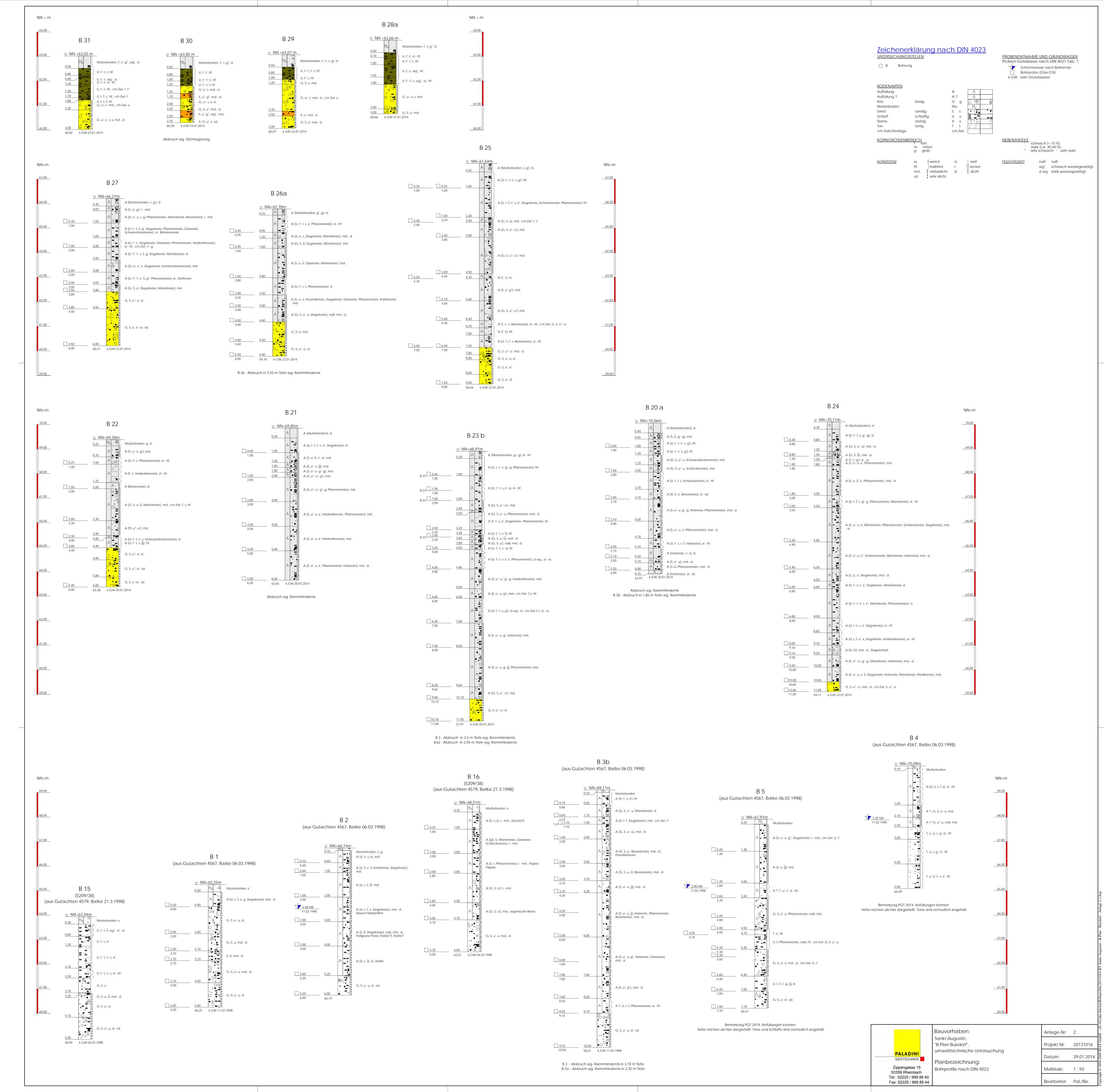
Genaue Aussagen hierzu können nach Vorliegen der geplanten Belastung der Straße (Schwerverkehr, Lieferverkehr usw.) und der letztendlich festgelegten Gradiente in Zusammenarbeit mit dem Straßenplaner erarbeitet werden.

Wir empfehlen nach Abstimmung mit den Versorgungsbetrieben und unter Berücksichtigung der Tiefenlage der Leitungen die in den Leitungsgräben der Straße "Am Rosenhain" eingebauten Materialien vorsorglich nachzuverdichten.


Seite 16 von 16 zum Gutachten Nr. 20131016 vom 17. März 2014


Generell sollten die Flächen nach den oben aufgeführten Vorgaben der RStO-01 bzw. RStO-12 hergestellt werden.


Bei weiteren Fragen bitten wir um Nachricht.


Mit freundlichen Grüßen

PALADINI GEOTECHNIK Dipl. - Geol. S. Paladini

Projekt: BV 20131016 B-Plan Buisdorf

Probenbezeichnung	B 20	B 21	B 22	B 23
Probenahmedatum	29.01.2014	29.01.2014	29.01.2014	29.01.2014
Probenahmezeit	09:25	09:10	08:45	11:00
Labornummer	014013432	014013433	014013434	014013435
Anreicherung [I]	2	2	2	2
Methode				

			Labornummer	014013432	014013433	014013434	014013435
			Anreicherung [I]	2	2	2	2
Parameter	Einheit	BG	Methode				

Angabe der Vorortparameter

Sauerstoff	Vol%	0,1	0,1	0,2	1,9	< 0,1
Kohlendioxid	Vol%	0,1	15,6	18,9	12,0	12,0
Methan	Vol%	0,1	11,0	12,3	14,4	9,3
Schwefelwasserstoff	ppm	1	< 2	< 2	< 2	< 2

Bestimmung aus der Aktivkohle-Anreicherung

Benzol	mg/m³	0,05	VDI 3865 BI. 3	0,055	0,079	< 0,050	< 0,050
Toluol	mg/m³	0,05	VDI 3865 BI. 3	0,063	0,16	< 0,050	< 0,050
Ethylbenzol	mg/m³	0,05	VDI 3865 BI. 3	< 0,050	< 0,050	< 0,050	< 0,050
m-/p-Xylol	mg/m³	0,05	VDI 3865 BI. 3	< 0,050	< 0,050	< 0,050	< 0,050
o-Xylol	mg/m³	0,05	VDI 3865 BI. 3	< 0,050	< 0,050	< 0,050	< 0,050
1,3,5-Trimethylbenzol	mg/m³	0,05	VDI 3865 BI. 3	< 0,050	< 0,050	< 0,050	< 0,050
1,2,4-Trimethylbenzol	mg/m³	0,05	VDI 3865 BI. 3	< 0,050	< 0,050	< 0,050	< 0,050
1,2,3-Trimethylbenzol	mg/m³	0,05	VDI 3865 BI. 3	< 0,050	< 0,050	< 0,050	< 0,050
Summe BTEX/TMB	mg/m³		berechnet	0,118	0,239	(n. b.*)	(n. b.*)
Dichlormethan	mg/m³	0,2	VDI 3865 Bl. 3	< 0,20	< 0,20	< 0,20	< 0,20
trans-1,2-Dichlorethen	mg/m³	0,2	VDI 3865 BI. 3	< 0,20	< 0,20	< 0,20	< 0,20
cis-1,2-Dichlorethen	mg/m³	0,2	VDI 3865 BI. 3	< 0,20	< 0,20	< 0,20	< 0,20
Trichlormethan	mg/m³	0,05	VDI 3865 BI. 3	< 0,050	< 0,050	< 0,050	< 0,050
1,1,1-Trichlorethan	mg/m³	0,05	VDI 3865 BI. 3	< 0,050	< 0,050	< 0,050	< 0,050
Tetrachlormethan	mg/m³	0,05	VDI 3865 BI. 3	< 0,050	< 0,050	< 0,050	< 0,050
Trichlorethen	mg/m³	0,05	VDI 3865 BI. 3	< 0,050	< 0,050	< 0,050	< 0,050
Tetrachlorethen	mg/m³	0,05	VDI 3865 BI. 3	< 0,050	< 0,050	< 0,050	< 0,050
Summe CKW	mg/m³		berechnet	(n. b.*)	(n. b.*)	(n. b.*)	(n. b.*)

Anmerkung:

(n. b.*): $\bar{\text{nicht}}$ berechenbar, da zur Summenbestimmung nur Werte > BG verwendet werden

Hmwolf

Einheit BG

. 74197001 Seite 3 von 3

Projekt: BV 20131016 B-Plan Buisdorf

Probenbezeichnung	B 24	B 25	B 26	B 27
Probenahmedatum	29.01.2014	29.01.2014	29.01.2014	29.01.2014
Probenahmezeit	09:40	10:00	10:15	10:30
Labornummer	014013436	014013437	014013438	014013439
Anreicherung [I]	2	2	2	2
Methode				

Angabe der Vorortparameter

Parameter

Sauerstoff	Vol%	0,1	1,7	8,8	1,4	3,1
Kohlendioxid	Vol%	0,1	10,8	6,8	7,5	12,1
Methan	Vol%	0,1	< 0,1	< 0,1	5,2	< 0,1
Schwefelwasserstoff	ppm	1	< 2	< 2	< 2	< 2

Bestimmung aus der Aktivkohle-Anreicherung

mg/m³	0,05	VDI 3865 BI. 3	< 0,050	< 0,050	0,059	< 0,050
mg/m³	0,05	VDI 3865 BI. 3	< 0,050	< 0,050	< 0,050	0,15
mg/m³	0,05	VDI 3865 BI. 3	< 0,050	< 0,050	< 0,050	< 0,050
mg/m³	0,05	VDI 3865 BI. 3	< 0,050	< 0,050	< 0,050	< 0,050
mg/m³	0,05	VDI 3865 BI. 3	< 0,050	< 0,050	< 0,050	< 0,050
mg/m³	0,05	VDI 3865 BI. 3	< 0,050	< 0,050	< 0,050	< 0,050
mg/m³	0,05	VDI 3865 BI. 3	< 0,050	< 0,050	< 0,050	< 0,050
mg/m³	0,05	VDI 3865 BI. 3	< 0,050	< 0,050	< 0,050	< 0,050
mg/m³		berechnet	(n. b.*)	(n. b.*)	0,059	0,15
mg/m³	0,2	VDI 3865 Bl. 3	< 0,20	< 0,20	< 0,20	< 0,20
mg/m³	0,2	VDI 3865 BI. 3	< 0,20	< 0,20	< 0,20	< 0,20
mg/m³	0,2	VDI 3865 BI. 3	< 0,20	< 0,20	< 0,20	< 0,20
mg/m³	0,05	VDI 3865 BI. 3	< 0,050	< 0,050	< 0,050	< 0,050
mg/m³	0,05	VDI 3865 BI. 3	< 0,050	< 0,050	< 0,050	< 0,050
mg/m³	0,05	VDI 3865 BI. 3	< 0,050	< 0,050	< 0,050	< 0,050
mg/m³	0,05	VDI 3865 BI. 3	< 0,050	< 0,050	< 0,050	< 0,050
mg/m³	0,05	VDI 3865 BI. 3	< 0,050	< 0,050	< 0,050	< 0,050
mg/m³		berechnet	(n. b.*)	(n. b.*)	(n. b.*)	(n. b.*)
	mg/m³	mg/m³ 0,05 mg/m³ 0,2 mg/m³ 0,2 mg/m³ 0,2 mg/m³ 0,2 mg/m³ 0,05	mg/m³ 0,05 VDI 3865 BI. 3 mg/m³ 0,2 VDI 3865 BI. 3 mg/m³ 0,2 VDI 3865 BI. 3 mg/m³ 0,2 VDI 3865 BI. 3 mg/m³ 0,05 VDI 3865 BI. 3	mg/m³ 0,05 VDI 3865 BI. 3 < 0,050	mg/m³ 0,05 VDI 3865 BI. 3 < 0,050 < 0,050 mg/m³ 0,05 VDI 3865 BI. 3 < 0,050	mg/m³ 0,05 VDI 3865 BI. 3 < 0,050 < 0,050 < 0,050 mg/m³ 0,05 VDI 3865 BI. 3 < 0,050

Anmerkung:

(n. b.*): nicht berechenbar, da zur Summenbestimmung nur Werte > BG verwendet werden

Auftraggeber:	Palad	ini Ge	otechnik F	Rheinbach			
	Zippe	ngass	e 15				
	53359	Rheir	nbach				
Projekt:	BV 20	13101	6 B-Plan E	Buisdorf		Blatt:	3
Datum:	2 <u>9.</u>	01.	2014	Uhrzeit: 9	25		
Entnahmestelle Bezeichnung:	<u>!</u> 			B 20		nannanannan marantanan marahanna	
Durchmesser [mi	m]: _	2	5	PE	Tiefe [m]	: 5,1	
Abdichtung:	IX ja □ nein				schadhaft nicht erkennbar	transiti i anti i a	
Probenahmebe Probenentnahme (Bezugspunkt: Pegelol	•		🗓 inte	griert über rlochlänge	Entnahmetief unter Bezugspunk		
Entnahmedater Umgebungsbedi	-	jen '	Temperatu Luftdruck [r [°C] <u>2</u> hPa / <u>98</u> \$	11117111111111111111111111111111111111		
Freipumpen		F	örderrate [I/min] 7	C	Dauer [min]	
<u>Messwerte</u>				G	erät: Deponie	gasmonitor GA 94	
Zeit			[min]	1	3	4	
Methan		CH ₄	[Vol. %]	9.16	10,9	11,0	
Kohlendioxid		CO ₂	[Vol. %]	14,5	15,4	-15,6	
Sauerstoff		O ₂	[Vol. %]	4.1	0,1	0,1	
Kohlenmonoxid	-	СО	[ppm]				
Schwefelwassers	stoff	H ₂ S	[ppm]	22	22	L2	
Adsorptionsro	öhrche	ən	Material:	AK	,	Probevolumen [i] Förderrate [l/min]	2,5
							Anlage 3.3
Probenehmer			Ai	Pauls	Anwesend	Hr. Beren	<u></u>
Unterschrift / Zeic	hen			Mus			рууудагун дагийн тамжаа ээн тамжаа тамжа
Paladini Lu				Vers	sion 03		30.04.200

Auftraggeber:	Palad	ini Ge	otechnik F	theinbach			
	Zippe	ngass	se 15				
	53359	Rheir	nbach				
Projekt:	BV 20	13101	6 B-Plan E	uisdorf		Bla	tt: <u>2</u>
Datum:	29.	01. :	2014	Uhrzeit:	9,10		
Entnahmestell Bezeichnung:	<u>le</u> 		•	B21			
Durchmesser [n	nm]: ˈ	ے	25		Tiefe [m]: <u>6</u>	
Material:	4**	······································		PE			
Abdichtung:		🕅 ja] schadhaft		
		☐ ne	in] nicht erkennba	r	
Probenahmeb Probenentnahm (Bezugspunkt: Pegel	i e oberkante		` \1	griert über rlochlänge	Entnahmetie unter Bezugspun	fe [m] kt	
Entnahmedate Umgebungsbed		en	Temperatu Luftdruck [l	r [°C] <u>2</u> nPa / <u>9</u> §			
Freipumpen		F	örderrate [l	/min]		Dauer [min] 4	international philips.
<u>Messwerte</u>					Gerät: Deponie	gasmonitor GA 9	94
Zeit			[min]	1		4	
Methan		CH ₄	[Vol. %]	6,9	12,2	12,3	
Kohlendioxid		CO ₂	[Vol. %]	10,4	18,6	18,9	
Sauerstoff		O ₂	[Vol. %]	13,9	0,3	0,2	
Kohlenmonoxid	_	СО	[ppm]				
Schwefelwasse	rstoff	H ₂ S	[ppm]	Z Z	22	22	τ
☑ Adsorptions Bemerkungen:	röhrche	n	Material:	A	Κ	Probevolumen Förderrate [l/mi	ACA A**
				,			Anlage 3.4
Probenehmer			A. Pau	els_1	Anwesend	Hr. Beren	2
Unterschrift / Zei	chen			Paul			
Paladini Lu				Ve	rsion 03		30.04.2008

Auftraggeber:	Palad	lini Ge	otechnik R	Rheinbach			
	Zippe	ngass	se 15				
	53359	Rhei	nbach				
Projekt:	BV 20)13101	l6 B-Plan B	Buisdorf		Blat	t: <u>1</u>
Datum:	<i>29,</i>	01.	2014	Uhrzeit:	145		
Entnahmestell Bezeichnung:	<u>e</u>			822			
Durchmesser [n	nm]:	Ž	25	PE	Tiefe [m]	: 3	
Abdichtung:		ሺ ja			schadhaft		
		☐ ne	in		nicht erkennbar		
Probenahmebe Probenentnahm (Bezugspunkt: Pegelo	е		•	griert über rlochlänge	Entnahmetief unter Bezugspunk		
Entnahmedate Umgebungsbed	-	jen	Temperatu Luftdruck [l	r [°C] <u>2</u> hPa / <u>985</u>			
Freipumpen		F	Förderrate [I	/min] ح		Pauer [min] 4	
<u>Messwerte</u>				G	erät: Deponie	gasmonitor GA 9	4
Zeit			[min]	1	3	4	
Methan		CH ₄	[Vol. %]	10,8	14,4	14,4	
Kohlendioxid		CO ₂	[Vol. %]	3	11,7	12,0	
Sauerstoff		O ₂	[Vol. %]	.10,5	2,5	1,9	
Kohlenmonoxid	~	СО	[ppm]	•			
Schwefelwasser	rstoff	H ₂ S	[ppm]	<u> </u>	12	22	
Adsorptions	röhrche	en	Material:	AK		Probevolumen [l	
Bemerkungen:							•
							Anlage 3.5
Probenehmer			A. 1	Pauls,	Anwesend		
Unterschrift / Zei	chen			Jany			
Paladini Lu		<u> </u>		Vers	sion 03		30.04.2008

Auftraggeber:	Palac	lini Ge	eotechnik F	Rheinbach					
	Zippe	engas	se 15						
	5335	9 Rhei	nbach						
Projekt:	BV 20	013101	I6 B-Plan E	Buisdorf	1980 J. S. J. C. J. C. L. S. C			Blatt:	5
Datum:	29.	01. 8	2014	Uhrzeit:	1100				
Entnahmestell Bezeichnung:	<u>e</u>	D2(4+1),\$171111111111111111111111111111111111	г препрадати	B23		***************************************			
Durchmesser [m	ım]:	2	5	PE	Tiefe	[m]:	10,5	•	
Abdichtung:	•	💢 ja	***************************************		☐ schadhaft	***************************************			
, wateritariyi		☐ ne	in		nicht erkennl	oar			
Probenahmebe	edinaı	ınden	1						
Probenentnahm (Bezugspunkt: Pegelo	е		_ ∭ inte	griert über rlochlänge	Entnahme unter Bezugsp		m]	3	
Entnahmedate Umgebungsbed		gen	Temperatu Luftdruck [r [°C] <u> </u>	<u> </u>				
Freipumpen		F	örderrate [l/min]	1	Dau	ıer [min]	7	***************************************
<u>Messwerte</u>					Gerät: Depoi	niegas	smonitor C	SA 94	
Zeit			[min]	1	3		5		7
Methan		CH ₄	[Vol. %]	9,1	9,3		9,3		9,3
Kohlendioxid		CO ₂	[Vol. %]	11.7	12.0		12,0		12,0
Sauerstoff		O ₂	[Vol. %]	2,7	<0.1		20,1		20,1
Kohlenmonoxid	-	СО	[ppm]	,	•				
Schwefelwassei	stoff	H₂S	[ppm]	22	. 22		22		22
X Adsorptions				AK assevsäi	ile in Boh	***************************************	Probevolum Förderrate [2,5
5 **									Anlage 3.6
Probenehmer		133441124	A, Pai	rls,	Anwesend		44. Be	rens	
Unterschrift / Zeid	chen		·	Many	(municipalities)			L	
Paladini Lu				/	Version 03				30.04.2008

Auftraggeber:	Paladini Ge Zippengass 53359 Rheii	e 15	heinbach			
Projekt:	BV 2013101	6 B-Plan B	uisdorf		Bla	tt: 4
Datum:	29.04.	2014	Uhrzeit: 🤌	40		
<u>Entnahmestell</u> Bezeichnung:	<u></u>		D24			
Durchmesser [m Material:	(PE	Tiefe [m]:	7,5	
Abdichtung:	፟ ja ☐ ne	in		schadhaft nicht erkennbar		
Probenahmebe Probenentnahm (Bezugspunkt: Pegelo	е	[½] integ	griert über rlochlänge	Entnahmetiefe unter Bezugspunk		-
<u>Entnahmedate</u> Umgebungsbed		Temperatu Luftdruck [l	r [°C] 2 nPa / J § §			
Freipumpen	F	örderrate [l	/min] <u>7</u>	D	Pauer [min] 6	
<u>Messwerte</u>		ĺ	(Gerät: Deponie	gasmonitor GA	94
Zeit		[min]	1	3	5	6
Methan	CH ₄	[Vol. %]	<0,1	<0,1	20,1	201
Kohlendioxid	CO ₂	[Vol. %]	6,7	10,3	10,7	10,8
Sauerstoff	O_2	[Vol. %]	13,0	2,5	1,7	1,6
Kohlenmonoxid	- CO	[ppm]		•		
Schwefelwasse	rstoff H₂S	[ppm]	22	Z 2	22	22
Adsorptions Bemerkungen:	röhrchen	Material:	AK		Probevolumen Förderrate [l/m	
						Anlage 3.7
Probenehmer	**************************************	A, Pa	uls	_ Anwesend		
Unterschrift / Zei	chen		Jans	***************************************	and the control of th	
Paladini Lu			Ver	sion 03		30.04.2008

Datum: 29,01,2014 Uhrzeit: 10.00 Entnahmestelle		Paladini Ge Zippengass 53359 Rhei	se 15	Rheinbach				
Datum: 29, 01, 2017 Uhrzeit: 70.	Projekt:	BV 2013101	6 B-Plan B	Buisdorf	***************************************	E	Blatt:	6
Bezeichnung:	Datum:	29,01,2	2014	Uhrzeit:	10.00			
Durchmesser [mm]: 2	<u>Entnahmestelle</u>			カっと				
Material: Abdichtung: ja	Bezeichnung:		***************************************	1525	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Abdichtung: ja	_	n]: <u>2</u>	2	PE	Tiefe [m]:	: 3,9		
Probenahmebedingungen Probenentnahme (Bezugspunkt: Pegeloberkante) Entnahmedaten Umgebungsbedingungen Förderrate [//min] Seriel [min] Messwerte Gerät: Deponiegasmonitor GA 94 Zeit [min] Methan CH4 [Vol. %] CO2 [Vol. %] Sauerstoff O2 [Vol. %] Sauerstoff O2 [Vol. %] Sauerstoff O2 [Vol. %] Sauerstoff O3 [Ppm] Schwefelwasserstoff H2S [ppm] Adsorptionsröhrchen Material: Alk Probenehmer Unterschrift / Zeichen					cohadhaft			
Probenahmebedingungen Probenentnahme (Bezugspunkt: Pegeloberkante) Entnahmedaten Umgebungsbedingungen Förderrate [I/min] Messwerte Zeit [min] Methan CH4 [Vol. %] Sauerstoff O2 [Vol. %] Sauerstoff O2 [Vol. %] Sauerstoff O2 [Vol. %] Sauerstoff O3 Schwefelwasserstoff H2S [ppm] Adsorptionsröhrchen Material: Probenehmer Unterschrift / Zeichen Pintegriert über Bohrlochlänge Entnahmetiefe [m] uriter Bezugspunkt O/3 Dauer [min] 4 Beauer [Min] A Beauer [Min] A Beauer [Min] Anwesend Anwesend Unterschrift / Zeichen	Abdicilitung.		in					
Probenentnahme (Bezugspunkt Pegeloberkante) Probenentnahme (Bezugspunkt Pegeloberkante) Probenentnahme (Bezugspunkt Pegeloberkante) Probenehmer Pr	Duahawahasaha			—				
Umgebungsbedingungen Temperatur [°C] Z Untdruck [hPa / 38 5] Freipumpen Förderrate [l/min] 5 Dauer [min] 4 Messwerte Gerät: Deponiegasmonitor GA 94 Zeit [min] 7 3 4 Methan CH4 [Vol. %] ∠ 0₁ 1 ∠ 0₁ 1 ∠ 0₁ 1 Kohlendioxid CO₂ [Vol. %] G₂ 4 G₁ 7 G₂ 8 S₂ 8 Sauerstoff O₂ [Vol. %] J₂ 2 S₂ 8, 8 S₂ 8 S₂ 8 Kohlenmonoxid - CO [ppm] ∠ 2 ∠ 2 ∠ 2 ∠ 2 Schwefelwasserstoff H₂S [ppm] ∠ 2 ∠ 2 ∠ 2 ∠ 2 Bemerkungen: Anwesend Anwesend Anwesend Anwesend	Probenentnahme	!	[∕a/ˈinteː̞	griert über rlochlänge	Entnahmetiefo unter Bezugspunk		-	
MesswerteGerät: Deponiegasmonitor GA 94Zeit[min]73 4 Methan CH_4 [Vol. %] $\angle 0,7$ $\angle 0,1$ $\angle 0,7$ Kohlendioxid CO_2 [Vol. %] CO_2 [Vol. %] CO_2 [Vol. %] CO_2 [Vol. %]Sauerstoff CO_2 [Vol. %] CO_2 [Vol. %] CO_2 [Vol. %] CO_2 [Vol. %]Schwefelwasserstoff CO_2 [ppm] CO_2 [ppm] CO_2 [ppm] CO_2 [ppm]Schwefelwasserstoff CO_2 [ppm] CO_2 [ppm] CO_2 [ppm] CO_2 [ppm]Bemerkungen: CO_2 [ppm] CO_2 [ppm] CO_2 [ppm] CO_2 [ppm]Bemerkungen: CO_2 [ppm] CO_2 [ppm] CO_2 [ppm] CO_2 [ppm]Anlage 3.8	Umgebungsbedir	ngungen				auer [min]	4	
Zeit $[min]$ 7 3 4 $[min]$ 8 $[min]$ 9 3 4 $[min]$ 8 $[min]$ 9 4 $[min]$ 9 4 $[min]$ 9 4 $[min]$ 1 2 $[min]$ 1 3 4 $[min]$ 1 4 $[min]$ 1 4 $[min]$ 1 4 $[min]$ 2 $[min]$ 2 $[min]$ 1 4 $[min]$ 8 $[min]$ 8 $[min]$ 9 4 $[min]$ 9 4 $[min]$ 9 6 $[min]$ 9 7 $[min]$ 9 8 $[min]$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			-					
Methan CH4 [Vol. %]				1		gasmonitor G	A 94	
Kohlendioxid CO_2 [Vol. %] $G_1 Y G_1 T G_2$ Sauerstoff O_2 [Vol. %] $G_1 Z G_2 G_3 G_4 G_4 G_5 G_5 G_5 G_5 G_5 G_5 G_5 G_5 G_5 G_5$				1111		4	_	
Sauerstoff O2 [Vol. %] Schwefelwasserstoff O2 [ppm] Schwefelwasserstoff CO [ppm] CO				20,7		20,0		
Kohlenmonoxid - CO [ppm]					80	00		
Schwefelwasserstoff H₂S [ppm] ∠2 ∠2 ∠2 Adsorptionsröhrchen Material: Ak Probevolumen [I] Z Förderrate [I/min] Bemerkungen: Anlage 3.8 Probenehmer Unterschrift / Zeichen Anwesend				2,2	3,5	X,0	-	
Adsorptionsröhrchen Material: Bemerkungen: Anlage 3.8 Probenehmer A. Pauls Anwesend Unterschrift / Zeichen				<u></u>	22	22		
Anlage 3.8 Probenehmer A. Pauls Anwesend Unterschrift / Zeichen	•	öhrchen	Material:			****		Z 0,5
			A. Pai	nls	Anwesend			Anlage 3.8
					rsion 03			30.04.200

Aditiaggesei.	Zippen 53359 F	gass		ileilibacii						
Projekt:	BV 201	3101	l6 B-Plan B	uisdorf	***************************************	***************************************		В	latt:	7
Datum:	29			Uhrzeit:	10	7-15				
<u>Entnahmestell</u> Bezeichnung:	<u>e</u>		managa omonomaa armas	B26						
Durchmesser [m Material:	nm]:	2	5	PE	•	Tiefe [m]:	2,3		
Abdichtung:	Ç	[∕ia] ne	in		□ s	chadhaft nicht erkennba	r			
Probenahmebe Probenentnahm (Bezugspunkt: Pegek	е	gen	_ □∑l*integ	griert über rlochlänge		Entnahmetie unter Bezugspun		<u>0,3</u>		
<u>Entnahmedate</u> Umgebungsbed			Temperatu Luftdruck [l					1	į	
Freipumpen		F	örderrate [l	/min]	5		Dauer	[min] $\frac{\zeta}{2}$	<u></u>	
<u>Messwerte</u>					G	erät: Deponie	egasm	nonitor GA	94	
Zeit			[min]	1		?		#		
Methan	C	H ₄	[Vol. %]	5,1		5,3		5,2		
Kohlendioxid	C	O ₂	[Vol. %]	7,5		7,6		7,5		
Sauerstoff		O ₂	[Vol. %]	2,1		1,4		1,4		
Kohlenmonoxid	- (co	[ppm]			•				
Schwefelwasser	stoff i	H₂S	[ppm]	<i>4</i> 2		< Z		< Z		
∰ Adsorptionsı Bemerkungen:	röhrchen	l	Material:		1K		**********	bevolume derrate [l/r		<u>2</u> 0,5
										Anlage 3.9
Probenehmer Unterschrift / Zeic	chen		A. Pan	ls (or and the second se	Anwesend				
Paladini I u			- John State of the State of th		Vers	ion 03				30.04.2008

Auftraggeber:	Palad	lini Ge	otechnik F	Rheinbach				
	Zippe	ngass	se 15					
	53359	Rhei	nbach					
Projekt:	BV 20)13101	6 B-Plan B	uisdorf		[3latt:	8
Datum:	29	, 01.	2014	Uhrzeit:	10,30			
Entnahmestell Bezeichnung:	<u>le</u>			B27				
Durchmesser [n	nm]:	2	S	PE	Tiefe [m]	: <i>6,2</i>		
Abdichtung:		∭ ja □ ne	in]	☐ schadhaft ☐ nicht erkennbar			
Probenahmeber Probenentnahm (Bezugspunkt: Pegel	ie		☑ inte∢	griert über rlochlänge	Entnahmetief unter Bezugspunk	[e [m]	3_	
Entnahmedate Umgebungsbed		jen	Temperatu Luftdruck [l	r [°C] <u>2</u> nPa / <u>9</u> &				
Freipumpen		F	örderrate [l	<u>ک</u> (min		Dauer [min]	5	***************************************
<u>Messwerte</u>					Gerät: Deponie	gasmonitor G	A 94	
Zeit			[min]	1	3	5		
Methan		CH ₄	[Vol. %]	<0,1	60,1	20,1		
Kohlendioxid		CO ₂	[Vol. %]	12,2	12,0	12,1		
Sauerstoff		O ₂	[Vol. %]	2.7	3,1	2,1		
Kohlenmonoxid	-	СО	[ppm]					
Schwefelwasse	rstoff	H ₂ S	[ppm]	L2	Z 2	C 2		
Adsorptions	röhrche	en	Material:	A	<i>K</i>	Probevolume		2
Bemerkungen:						Förderrate [l/	min]	0,5
								Anlage 3.10
Probenehmer			A. Pa	nls	Anwesend	The state of the s	11-1-11	
Unterschrift / Zei	chen	***************************************		Mars				
Paladini Lu			/		ersion 03			30.04.2008

Projekt: Paladini, Rheinbach 20131016-001

Untersuchung nach LAGA Bode	Probenbezeichnung	MP Aushub 1						
				Grenz	zwerte		Labornummer	014023401
Parameter	Einheit	BG	Z0	Z1.1	Z1.2	Z2	Methode Einstufung	Z1.1

Bestimmung aus der Originalsubstanz

Trockenmasse	%	0,1					DIN EN 14346	90,2
pH-Wert	ohne		5,5 - 8	5,5 - 8	5 - 9		DIN ISO 10390	6,8
Cyanid, gesamt	mg/kg TS	0,5	1	10	30	100	DIN ISO 17380	< 0,5
Kohlenwasserstoffe C10-C40	mg/kg TS	40	100	300	500	1000	DIN EN 14039, LAGA KW 04	< 40
EOX	mg/kg TS	1	1	3	10	15	DIN 38414-S17	< 1
Benzol	mg/kg TS	0,05					DIN ISO 22155 / HLUG HB Bd. 7 T.4	< 0,05
Toluol	mg/kg TS	0,05					DIN ISO 22155 / HLUG HB Bd. 7 T.4	< 0,05
Ethylbenzol	mg/kg TS	0,05					DIN ISO 22155 / HLUG HB Bd. 7 T.4	< 0,05
m-/p-Xylol	mg/kg TS	0,05					DIN ISO 22155 / HLUG HB Bd. 7 T.4	< 0,05
o-Xylol	mg/kg TS	0,05					DIN ISO 22155 / HLUG HB Bd. 7 T.4	< 0,05
1,3,5-Trimethylbenzol	mg/kg TS	0,05					DIN ISO 22155 / HLUG HB Bd. 7 T.4	< 0,05
1,2,4-Trimethylbenzol	mg/kg TS	0,05					DIN ISO 22155 / HLUG HB Bd. 7 T.4	< 0,05
1,2,3-Trimethylbenzol	mg/kg TS	0,05					DIN ISO 22155 / HLUG HB Bd. 7 T.4	< 0,05
Summe BTEX/TMB	mg/kg TS		< 1	1	3	5	berechnet	(n. b.*)
Dichlormethan	mg/kg TS	0,05					DIN ISO 22155 / HLUG HB Bd. 7 T.4	< 0,05
trans-1,2-Dichlorethen	mg/kg TS	0,05					DIN ISO 22155 / HLUG HB Bd. 7 T.4	< 0,05
cis-1,2-Dichlorethen	mg/kg TS	0,05					DIN ISO 22155 / HLUG HB Bd. 7 T.4	< 0,05
Trichlormethan	mg/kg TS	0,05					DIN ISO 22155 / HLUG HB Bd. 7 T.4	< 0,05
1,1,1-Trichlorethan	mg/kg TS	0,05					DIN ISO 22155 / HLUG HB Bd. 7 T.4	< 0,05
Tetrachlormethan	mg/kg TS	0,05					DIN ISO 22155 / HLUG HB Bd. 7 T.4	< 0,05
Trichlorethen	mg/kg TS	0,05					DIN ISO 22155 / HLUG HB Bd. 7 T.4	< 0,05
Tetrachlorethen	mg/kg TS	0,05					DIN ISO 22155 / HLUG HB Bd. 7 T.4	< 0,05
Summe CKW	mg/kg TS		< 1	1	3	5	berechnet	(n. b.*)
Naphthalin	mg/kg TS	0,05		0,5	1		DIN EN 15527 / DIN ISO 18287	< 0,05
Acenaphthylen	mg/kg TS	0,05					DIN EN 15527 / DIN ISO 18287	< 0,05
Acenaphthen	mg/kg TS	0,05					DIN EN 15527 / DIN ISO 18287	< 0,05
Fluoren	mg/kg TS	0,05					DIN EN 15527 / DIN ISO 18287	< 0,05
Phenanthren	mg/kg TS	0,05					DIN EN 15527 / DIN ISO 18287	0,06
Anthracen	mg/kg TS	0,05					DIN EN 15527 / DIN ISO 18287	< 0,05
Fluoranthen	mg/kg TS	0,05					DIN EN 15527 / DIN ISO 18287	0,2
Pyren	mg/kg TS	0,05					DIN EN 15527 / DIN ISO 18287	0,2
Benz(a)anthracen	mg/kg TS	0,05					DIN EN 15527 / DIN ISO 18287	0,1
Chrysen	mg/kg TS	0,05					DIN EN 15527 / DIN ISO 18287	0,1
Benzo(b)fluoranthen	mg/kg TS	0,05					DIN EN 15527 / DIN ISO 18287	0,2
Benzo(k)fluoranthen	mg/kg TS	0,05					DIN EN 15527 / DIN ISO 18287	0,07
Benzo(a)pyren	mg/kg TS	0,05		0,5	1		DIN EN 15527 / DIN ISO 18287	0,1
Indeno(1,2,3-cd)pyren	mg/kg TS	0,05					DIN EN 15527 / DIN ISO 18287	0,1
Dibenz(a,h)anthracen	mg/kg TS	0,05					DIN EN 15527 / DIN ISO 18287	< 0,05
Benzo(g,h,i)perylen	mg/kg TS	0,05					DIN EN 15527 / DIN ISO 18287	0,1
Summe PAK (EPA)	mg/kg TS		1	5	15	20	berechnet	1,2

Prüfbericht zu Auftrag 01412605 Nr. 553381960 Seite 3 von 3

Projekt: Paladini, Rheinbach 20131016-001

Untersuchung	nach I	ΔGΔ	Roden	1997
Unitersuctioning	Hacii L	-AGA	Douell	1331

Untersuchung nach LAG	GA Boden 1997	Probenbezeichnung	MP Aushub					
				Grenz	zwerte		Labornummer	014023401
Parameter	Einheit	BG	Z0	Z1.1	Z1.2	Z2	Methode Einstufung	Z1.1
PCB 28	mg/kg TS	0,01					DIN EN 15308 / DIN ISO 10382 (MSD)	< 0,01
PCB 52	mg/kg TS	0,01					DIN EN 15308 / DIN ISO 10382 (MSD)	< 0,01
PCB 101	mg/kg TS	0,01					DIN EN 15308 / DIN ISO 10382 (MSD)	< 0,01
PCB 153	mg/kg TS	0,01					DIN EN 15308 / DIN ISO 10382 (MSD)	< 0,01
PCB 138	mg/kg TS	0,01					DIN EN 15308 / DIN ISO 10382 (MSD)	< 0,01
PCB 180	mg/kg TS	0,01					DIN EN 15308 / DIN ISO 10382 (MSD)	< 0,01
Summe 6 PCB	mg/kg TS		0,02	0,1	0,5	1	berechnet	(n. b.*)

Bestimmung aus dem Königswasseraufschluss

Arsen	mg/kg TS	0,8	20	30	50	150	DIN EN ISO 17294-2	11,1
Blei	mg/kg TS	2	100	200	300	1000	DIN EN ISO 17294-2	32
Cadmium	mg/kg TS	0,2	0,6	1	3	10	DIN EN ISO 17294-2	0,4
Chrom gesamt	mg/kg TS	1	50	100	200	600	DIN EN ISO 17294-2	25
Kupfer	mg/kg TS	1	40	100	200	600	DIN EN ISO 17294-2	19
Nickel	mg/kg TS	1	40	100	200	600	DIN EN ISO 17294-2	28
Quecksilber	mg/kg TS	0,07	0,3	1	3	10	DIN EN ISO 16772/DIN EN 1483	0,11
Thallium	mg/kg TS	0,2	0,5	1	3	10	DIN EN ISO 17294-2	< 0,2
Zink	mg/kg TS	1	120	300	500	1500	DIN EN ISO 17294-2	84

Bestimmung aus dem Eluat

pH-Wert	ohne		6,5 - 9	6,5 - 9	6 - 12	5,5 - 12	DIN 38404-C5 / DIN EN ISO 10523	8,0
el. Leitfähigkeit (25 ℃)	µS/cm	1	500	500	1000	1500	DIN EN 27888	106
Chlorid	mg/l	1	10	10	20	30	DIN EN ISO 10304-1/2	< 1
Sulfat	mg/l	1	50	50	100	150	DIN EN ISO 10304-1/2	2
Cyanid, gesamt	μg/l	5	< 10	10	50	100	DIN EN ISO 14403	<5
Phenolindex (wdf.)	μg/l	10	10	10	50	100	DIN EN ISO 14402	<10
Arsen	μg/l	1	10	10	40	60	DIN EN ISO 17294-2	1
Blei	μg/l	1	20	40	100	200	DIN EN ISO 17294-2	<1
Cadmium	μg/l	0,3	2	2	5	10	DIN EN ISO 17294-2	<0,3
Chrom gesamt	μg/l	1	15	30	75	150	DIN EN ISO 17294-2	1
Kupfer	μg/l	5	50	50	150	300	DIN EN ISO 17294-2	<5
Nickel	μg/l	1	40	50	150	200	DIN EN ISO 17294-2	<1
Quecksilber	μg/l	0,2	0,2	0,2	1	2	DIN EN 1483/DIN EN ISO 12846	<0,2
Thallium	μg/l	0,2	< 1	1	3	5	DIN EN ISO 17294-2	<0,2
Zink	μg/l	10	100	100	300	600	DIN EN ISO 17294-2	<10

(n. b.*): nicht berechenbar, da zur Summenbestimmung nur Werte > BG verwendet werden

Anmerkung:

EUROFINS UMWELT übernimmt für die Rechtsverbindlichkeit der zitierten Grenzwerte keine Gewähr.

Projekt: Paladini, Rheinbach 20131016-001

Untersuchung nach DepV Stand						Probenbezeichnung	MP Aushub 1	
				Grenz	werte		Labornummer	014023401
Parameter	Einheit	BG	DK 0	DK I	DK II	DK III	Methode Einstufung	DK II

Bestimmung aus der Originalsubstanz

Benzol mg/kg TS 0,05	Bestimmung aus der Originals	ubstanz							
TOC	Trockenmasse	%	0,1					DIN EN 14346	90,2
Benzol mg/kg TS 0,05	Glühverlust	Ma% TS	0,1	3	3	5	10	DIN EN 15169	3,1
Toluol mg/kg TS 0,05	TOC	Ma% TS	0,1	1	1	3	6		0,5
Ethylbenzol mg/kg TS 0.05 DiN ISO 22155 / HLUG HB Bd. 7 < 0.05	Benzol	mg/kg TS	0,05						< 0,05
Ethylein mg/kg S 0,05	Toluol	mg/kg TS	0,05						< 0,05
o-Xylol mg/kg TS 0,05	Ethylbenzol	mg/kg TS	0,05						< 0,05
6-Xylol mg/kg TS 0,05 T.A < 0,05 Styrol mg/kg TS 0,05 DIN ISO 22155 / HLUG HB Bd. 7 < 0,05	m-/p-Xylol	mg/kg TS	0,05						< 0,05
Styrol mg/kg TS 0,05 T.4 < 0,05 Co.05 Co	o-Xylol	mg/kg TS	0,05						< 0,05
Summe BTEX n. DepV mg/kg TS 0,05 mg/kg TS 0,01 Din En 15308 / Din ISO 10382 0,00 Din En 1530	Styrol	mg/kg TS	0,05						< 0,05
Summe BTEX n. DepV mg/kg TS 6 berechnet (n. b.*) PCB 28 mg/kg TS 0.01 DIN EN 15308 / DIN ISO 10382 < 0.01	iso-Propylbenzol (Cumol)	mg/kg TS	0,05						< 0,05
PCB 28	Summe BTEX n. DepV	mg/kg TS		6				berechnet	(n. b.*)
PCB 52 mg/kg TS 0,01 mg/kg TS 0,05 mg/kg TS	PCB 28	mg/kg TS	0,01						< 0,01
PCB 101	PCB 52	mg/kg TS	0,01						< 0,01
PCB 138	PCB 101	mg/kg TS	0,01						< 0,01
PCB 153	PCB 138	mg/kg TS	0,01						< 0,01
PCB 180	PCB 153	mg/kg TS	0,01						< 0,01
Summe 7 PCB	PCB 180	mg/kg TS	0,01						< 0,01
Summe 7 PCB mg/kg TS < 1 berechnet (n. b.*) Kohlenwasserstoffe C10-C40 mg/kg TS 40 500 DIN EN 14039, LAGA KW 04 < 40	PCB 118	mg/kg TS	0,01						< 0,01
Naphthalin mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 < 0,05 Acenaphthylen mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 < 0,05	Summe 7 PCB	mg/kg TS		< 1				berechnet	(n. b.*)
Acenaphthylen mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 < 0,05 Acenaphthen mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 < 0,05	Kohlenwasserstoffe C10-C40	mg/kg TS	40	500				DIN EN 14039, LAGA KW 04	< 40
Acenaphthen mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 < 0,05 Fluoren mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 < 0,05	Naphthalin	mg/kg TS	0,05					DIN EN 15527 / DIN ISO 18287	< 0,05
Fluoren mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 < 0,05 Phenanthren mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 0,06 Anthracen mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 < 0,05	Acenaphthylen	mg/kg TS	0,05					DIN EN 15527 / DIN ISO 18287	< 0,05
Phenanthren mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 0,06 Anthracen mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 < 0,05	Acenaphthen	mg/kg TS	0,05					DIN EN 15527 / DIN ISO 18287	< 0,05
Anthracen mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 < 0,05 Fluoranthen mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 0,2 Pyren mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 0,2 Benz(a)anthracen mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 0,1 Chrysen mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 0,1 Benzo(b)fluoranthen mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 0,2 Benzo(k)fluoranthen mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 0,07 Benzo(a)pyren mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 0,1 Indeno(1,2,3-cd)pyren mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 0,1 Dibenz(a,h)anthracen mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 < 0,05	Fluoren	mg/kg TS	0,05					DIN EN 15527 / DIN ISO 18287	< 0,05
Fluoranthen mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 0,2 Pyren mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 0,2 Benz(a)anthracen mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 0,1 Chrysen mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 0,1 Benzo(b)fluoranthen mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 0,2 Benzo(k)fluoranthen mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 0,07 Benzo(a)pyren mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 0,1 Indeno(1,2,3-cd)pyren mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 0,1 Dibenz(a,h)anthracen mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 < 0,05	Phenanthren	mg/kg TS	0,05					DIN EN 15527 / DIN ISO 18287	0,06
Pyren mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 0,2 Benz(a)anthracen mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 0,1 Chrysen mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 0,1 Benzo(b)fluoranthen mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 0,2 Benzo(k)fluoranthen mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 0,07 Benzo(a)pyren mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 0,1 Indeno(1,2,3-cd)pyren mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 0,1 Dibenz(a,h)anthracen mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 < 0,05	Anthracen	mg/kg TS	0,05					DIN EN 15527 / DIN ISO 18287	< 0,05
Benz(a)anthracen mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 0,1 Chrysen mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 0,1 Benzo(b)fluoranthen mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 0,2 Benzo(k)fluoranthen mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 0,07 Benzo(a)pyren mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 0,1 Indeno(1,2,3-cd)pyren mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 0,1 Dibenz(a,h)anthracen mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 < 0,05	Fluoranthen	mg/kg TS	0,05					DIN EN 15527 / DIN ISO 18287	0,2
Chrysen mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 0,1 Benzo(b)fluoranthen mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 0,2 Benzo(k)fluoranthen mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 0,07 Benzo(a)pyren mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 0,1 Indeno(1,2,3-cd)pyren mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 0,1 Dibenz(a,h)anthracen mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 < 0,05	Pyren	mg/kg TS	0,05					DIN EN 15527 / DIN ISO 18287	0,2
Benzo(b)fluoranthen mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 0,2 Benzo(k)fluoranthen mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 0,07 Benzo(a)pyren mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 0,1 Indeno(1,2,3-cd)pyren mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 0,1 Dibenz(a,h)anthracen mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 < 0,05	Benz(a)anthracen	mg/kg TS	0,05					DIN EN 15527 / DIN ISO 18287	0,1
Benzo(b)fluoranthen mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 0,2 Benzo(k)fluoranthen mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 0,07 Benzo(a)pyren mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 0,1 Indeno(1,2,3-cd)pyren mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 0,1 Dibenz(a,h)anthracen mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 < 0,05	Chrysen	mg/kg TS	0,05					DIN EN 15527 / DIN ISO 18287	0,1
Benzo(a)pyren mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 0,1 Indeno(1,2,3-cd)pyren mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 0,1 Dibenz(a,h)anthracen mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 < 0,05								DIN EN 15527 / DIN ISO 18287	
Indeno(1,2,3-cd)pyren mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 0,1 Dibenz(a,h)anthracen mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 < 0,05	Benzo(k)fluoranthen	mg/kg TS	0,05					DIN EN 15527 / DIN ISO 18287	0,07
Dibenz(a,h)anthracen mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 < 0,05 Benzo(g,h,i)perylen mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 0,1 Summe PAK (EPA) mg/kg TS 30 berechnet 1,2	Benzo(a)pyren	mg/kg TS	0,05					DIN EN 15527 / DIN ISO 18287	0,1
Benzo(g,h,i)perylen mg/kg TS 0,05 DIN EN 15527 / DIN ISO 18287 0,1 Summe PAK (EPA) mg/kg TS 30 berechnet 1,2	Indeno(1,2,3-cd)pyren	mg/kg TS	0,05					DIN EN 15527 / DIN ISO 18287	0,1
Summe PAK (EPA) mg/kg TS 30 berechnet 1,2	Dibenz(a,h)anthracen	mg/kg TS	0,05					DIN EN 15527 / DIN ISO 18287	< 0,05
	Benzo(g,h,i)perylen	mg/kg TS	0,05					DIN EN 15527 / DIN ISO 18287	0,1
lipophile Stoffe Ma% OS 0,02 0,1 0,4 0,8 4 LAGA KW/04 0,03	Summe PAK (EPA)	mg/kg TS		30				berechnet	1,2
	lipophile Stoffe	Ma% OS	0,02	0,1	0,4	0,8	4	LAGA KW/04	0,03

Prüfbericht zu Auftrag 01412605

Nr. 553381960N1 Seite 3 von 4

Umwelt

Projekt: Paladini, Rheinbach 20131016-001

Untersuchung nach DepV Stand	l 01.12.2011						Probenbezeichnung	MP Aushub
				Grenz	werte		Labornummer	014023401
Parameter	Einheit	BG	DK 0	DK I	DK II	DK III	Methode Einstufung	DK II

Bestimmung aus dem Eluat

3								
pH-Wert	ohne		5,5 - 13	5,5 - 13	5,5 - 13	4 - 13	DIN 38404-C5 / DIN EN ISO 10523	8,0
DOC	mg/l	1	50	50	80	100	DIN EN 1484	2,3
Phenolindex (wdf.)	mg/l	0,01	0,1	0,2	50	100	DIN EN ISO 14402	< 0,010
Chlorid	mg/l	1	80	1500	1500	2500	DIN EN ISO 10304-1/2	< 1
Sulfat	mg/l	1	100	2000	2000	5000	DIN EN ISO 10304-1/2	2
Cyanid, leicht freisetzbar	mg/l	0,005	0,01	0,1	0,5	1	DIN EN ISO 14403	< 0,005
Fluorid	mg/l	0,1	1	5	15	50	DIN 38405-D4	0,57
Gesamtgehalt an gelösten Feststoffen	mg/l	50	400	3000	6000	10000	DIN EN 15216/DIN 38409-H1	< 50
Arsen	mg/l	0,001	0,05	0,2	0,2	2,5	DIN EN ISO 17294-2	0,001
Blei	mg/l	0,001	0,05	0,2	1	5	DIN EN ISO 17294-2	< 0,001
Cadmium	mg/l	0,0003	0,004	0,05	0,1	0,5	DIN EN ISO 17294-2	< 0,0003
Kupfer	mg/l	0,005	0,2	1	5	10	DIN EN ISO 17294-2	< 0,005
Nickel	mg/l	0,001	0,04	0,2	1	4	DIN EN ISO 17294-2	< 0,001
Quecksilber	mg/l	0,0002	0,001	0,005	0,02	0,2	DIN EN 1483/DIN EN ISO 12846	< 0,0002
Zink	mg/l	0,01	0,4	2	5	20	DIN EN ISO 17294-2	< 0,01
Barium	mg/l	0,001	2	5	10	30	DIN EN ISO 17294-2	0,008
Chrom gesamt	mg/l	0,001	0,05	0,3	1	7	DIN EN ISO 17294-2	0,001
Molybdän	mg/l	0,001	0,05	0,3	1	3	DIN EN ISO 17294-2	0,001
Antimon	mg/l	0,001	0,006	0,03	0,07	0,5	DIN EN ISO 17294-2	< 0,001
Selen	mg/l	0,001	0,01	0,03	0,05	0,7	DIN EN ISO 17294-2	0,003

Anmerkung:

(n. b.*): nicht berechenbar, da zur Summenbestimmung nur Werte > BG verwendet werden

Anmerkung:

EUROFINS UMWELT übernimmt für die Rechtsverbindlichkeit der zitierten Grenzwerte keine Gewähr.

Prüfbericht zu Auftrag 01412605

Nr. 553381960N1 Seite 4 von 4

0,8 kg

Probenbegleitprotokoll nach DIN 19747 - Juli 2009 - Anhang A

Labornummer: 014023401 **Probenbezeichnung:** MP Aushub 1

Probenvorbereitung (von der Laborprobe zur Prüfprobe)

Probenahme erfolgte durch:

Probenahmeprotokoll (von der Feldprobe zur Laborprobe) liegt vor:

Separierung / Aussonderung von Stoffgruppen:

Siebrückstand > 40 mm:

Probenteilung / Homogenisierung durch:

fraktionierendes Teilen

Rückstellprobe (= vorbereitete Prüfprobe, Rückstellfrist 12 Monate):

Probenaufarbeitung (von der Prüfprobe zur Messprobe) ****)

Nr.	DK 0	DK I,	Rek.	Parameter	Zerkleinern	Trocknen	Feinzer-	Proben-
		II, III			**)		kleinern ***)	menge
0	Х	Х	Х	Trockenmasse	< 5 mm	nein	nein	15 g
1.01	Х	Х		Glühverlust	< 5 mm	40 ℃	< 150 µm	10 g
1.02	Х	Х		TOC	< 5 mm	40 ℃	< 150 µm	2 g
2.01	Х			BTEX	Originalprobe (Stichprobe)	nein	nein	20 g + 20 ml Methanol
2.02 + 2.04	х		Х	PAK/PCB	< 5 mm	nein	nein	12,5 g
2.03	х			MKW (C ₁₀ - C ₄₀)	< 5 mm	nein	nein	20 g
2.07	Х	Х		Lipophile Stoffe	< 5 mm	Verreiben mit Natriumsulfat	nein	20 g
2.08 - 2.14			Х	Metalle, Königs- wasseraufschluss	< 5 mm	40 ℃	< 150 μm	3 g
3.01 - 3.21	Х	Х	Х	Eluat	nein / < 40 mm	nein	nein	100 g
1.01/1.02 *)	х	Х		C-elementar	< 5 mm	40 ℃	< 150 µm	2 g
1.01/1.02 *)	х	Х		AT4	< 10 mm	nein	nein	300 g
1.01/1.02 *)	Х	Х		GB21	< 10 mm	nein	nein	200 g
1.01/1.02 *)	Х	Х		Brennwert	< 5 mm	105 ℃	< 150 µm	5 g

^{*)} Zusatzparameter bei Überschreitung der genannten Grenzwerte

^{**)} Zerkleinern mittels Backenbrecher mit Wolframkarbid-Backen

^{***)} Feinzerkleinerung mittels Laborbackenbrecher BB51 mit Wolframkarbid-Backen

^{****)} Maximalumfang; gilt nur für die beauftragten Parameter

Bild 1, oben: Blick in Richtung Autobahn entlang der Bohrungen B 22, B 21 und B 20, rechts im Bild ist die Straße "Am Rosenhain" zu sehen. Nahe der Absperrung liegt der Kanaldeckel (Höhenbezug).

Bild 2, unten: Blick in Richtung Bahnstrecke.

PALADINI	Bauvorhaben: Altablagerung	Anlage Nr.:	4.1
GEOTECHNIK	5209-118 in Sankt Augustin	Projekt Nr.:	20131016
	Buisdorf	Datum:	14.01.2014
	Planbezeichnung:	Maßstab:	ohne
	Fotodokumentation	Bearbeiter:	Pal

Bild 3, oben: Blick in Richtung Autobahn (Hintergrund), ersichtlich ist das wellige Relief im Bereich der Altablagerung.

Bild 4, unten: Vollständige Ansicht mit der Ebene parallel der Bahnstrecke (links im Bild) und der welligen Altablagerung auf der rechten Bildseite.

PALADINI	Bauvorhaben: Altablagerung	Anlage Nr.:	4.2
GEOTECHNIK	5209-118 in Sankt Augustin	Projekt Nr.:	20131016
	Buisdorf	Datum:	14.01.2014
	Planbezeichnung:	Maßstab:	ohne
	Fotodokumentation	Bearbeiter:	Pal